TY - CHAP A1 - Hübert, Thomas A1 - Tiebe, Carlo A1 - Banach, Ulrich ED - Rodriguez Mendez, M. T1 - Electronic Noses for the Quality Control of Spices T2 - Electronic Noses and Tongues in Food Science N2 - The chapter describes the application of electronic noses (multigas sensors) for the quality control of spices and spice mixtures. Electronic noses were successfully applied for headspace analysis of spices. It was demonstrated in many investigations that electronic noses can contribute to the characterization of spices and spice mixtures in order to distinguish spices and spice mixtures, differentiate by origin, growth seasons,and processing,indicate adulteration from original, detect mold infestation. Electronic noses can be used as a fast screening method to provide information about the product quality. However, it needs samples and methods for reference, careful training, and complex calibration to consider influencing and disturbing effects as well as the possible limitations of the instrumentation. The correlation to classical chemical analysis methods is always advisable. Machined olfaction methods are capable to support the sensory analysis; however, they cannot yet substitute them. KW - Spice KW - Electronic Nose KW - Multigas sensor KW - Quality control PY - 2016 SN - 978-0-12-800243-8 DO - https://doi.org/10.1016/B978-0-12-800243-8.00012-3 SP - Chapter 12, 115 EP - 124 PB - Academic Press CY - Oxford AN - OPUS4-35443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erwamati, F. U. A1 - Pratapa, S. A1 - Suasmoro, S. A1 - Hübert, Thomas A1 - Banach, Ulrich T1 - Preparation and structural study of Mg1−xZnxTiO3 ceramics and their dielectric properties from 1 Hz to 7.7 GHz JF - Journal of Materials Science: Materials in Electronics N2 - A series of Mg₁₋ₓZnₓTiO₃, x = 0–0.5 (MZT0–MZT0.5) ceramics was synthesised and characterised. The dielectric properties of the samples in the frequency range of 1 Hz – 7.7 GHz were explored using three different methods: a contacting electrode method, a parallel-plate method and a perturbed resonator method. The electrical properties in the space charge and dipolar polarisation frequency ranges are discussed in relation to the phase composition and microstructure data. Differences in the zinc Substitution divided the dielectrics into two groups, namely MZT0-MZT0.2 and MZT0.3–MZT0.5, each with different amount of a main Mg₁₋ₓZnₓTiO₃ solid solution phase and a secondary solid solution phase. Zinc substitution promoted the density of the ceramics, improved the purity of the main phase and increased the permittivity for frequencies up to 10⁸ Hz, but reduced the permittivity in the microwave range. In the MZT0.3–MZT0.5 samples, for frequencies less than 1 MHz the quality (Q x ƒ) factors were lower and log σ ₐ.c, the AC conductivity, was higher than for the MZT0–MZT0.2 samples. Above 10 MHz, the (Q x ƒ) factors and log σ ₐ.c of the two groups were similar. KW - Mg1-xZnxTiO3 KW - Space charge polarisation KW - Dipole polarisation KW - Microwave frequency KW - Dielectric properties PY - 2016 DO - https://doi.org/10.1007/s10854-016-4610-6 SN - 0957-4522 VL - 27 IS - 7 SP - 6637 EP - 6645 PB - Springer CY - Dordrecht, Netherlands AN - OPUS4-36466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -