TY - JOUR A1 - Lang, M. A1 - Banach, Ulrich A1 - Nörthemann, K. A1 - Gerlitzke, A.-K. A1 - Milstrey, M. A1 - Kaufer, R. A1 - Woratz, M. A1 - Hübert, Thomas A1 - Moritz, W. T1 - Long-term stability of a MEIS low energy hydrogen sensor JF - Sensors and actuators B: Chemical N2 - A hydrogen sensor based on a silicon Metal/Solid Electrolyte/Insulator/Semiconductor (MEIS) structure with thin layers of the super-ionic conductor LaF3 and Pd gate metal was investigated in a hybrid structure on a resistance heater mounted on a ceramic substrate. The sensor was operated at room temperature, however, a short heating impulse once a day ensures a fast and reproducible dynamic behavior. The sensor was characterized in the concentration range typical for alarm levels up to 40% of the lower flammability limit and shows a logarithmic dependency of the sensor signal from the hydrogen concentration and a mean sensitivity of about 140 mV/decade. The response time (t90) is about 8 s. In a long term test for a period of three month, the sensor was exposed to hydrogen every two weeks. The sensor signal was shown to be stable in dynamic behavior, sensitivity and signal difference. KW - Hydrogen detection KW - Long-term measurement KW - MEIS-structure KW - Low energy sensor PY - 2013 DO - https://doi.org/10.1016/j.snb.2012.12.081 SN - 0925-4005 SN - 1873-3077 VL - 187 SP - 395 EP - 400 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-29223 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gerlitzke, A.-K. A1 - Nörthemann, K. A1 - Lang, M. A1 - Milstrey, M. A1 - Kaufer, R. A1 - Woratz, M. A1 - Banach, Ulrich A1 - Hübert, Thomas A1 - Moritz, W. T1 - Long-term stability of the low energy hydrogen sensor T2 - IMCS 2012 - 14th International meeting on chemical sensors N2 - A silicon MIS-structure prepared with thin layers of the super-ionic conductor LaF3 and Pd is used to detect hydrogen. The sensor is able to detect hydrogen in a concentration range from below one ppm to the lower flammable limit in air which is 4 vol.-%. The chip operates at room temperature which results in an extremely low energy consumption compared to other hydrogen sensors. Only once per day a short heating pulse is necessary to reactivate the sensor chip. In cooperation with the BAM, a long-term experiment was carried out. The duration of the measurement was about three months, with a hydrogen exposure every two weeks. The sensor signal remained stable over the measured period. T2 - IMCS 2012 - 14th International meeting on chemical sensors CY - Nuremberg, Germany DA - 20.05.2012 KW - Hydrogen detection KW - Long-term measurement KW - MIS-structure KW - Low energy sensor PY - 2012 SN - 978-3-9813484-2-2 DO - https://doi.org/10.5162/IMCS2012/P2.5.1 SP - 1571 EP - 1574 PB - AMA Service GmbH CY - Wunstorf AN - OPUS4-26177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -