TY - CONF A1 - Artinov, Antoni A1 - Bakir, Nasim A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Na, S.-J. A1 - Rethmeier, Michael T1 - On the search for the origin of the bulge effect in high power laser beam welding N2 - The shape of the weld pool in laser beam welding plays a major role to understand the dynamics of the melt and its solidification behavior. The aim of the present work was its experimental and numerical investigation. To visualize the geometry of the melt pool in the longitudinal section a butt joint configuration of 15 mm thick structural steel and transparent quartz glass was used. The weld pool shape was recorded by means of a high-speed video camera and two thermal imaging MWIR and VIS cameras. The observations show that the dimensions of the weld pool vary depending on the depth. The regions close to the surface form a teardrop shaped weld pool. A bulge-region and its temporal evolution were observed approximately in the middle of the depth of the weld pool. Additionally, a transient numerical simulation was performed until reaching a steady state to obtain the weld pool shape and to understand the formation mechanism of the observed bulging phenomena. A fixed keyhole with an experimentally obtained shape was used to represent the full-penetration laser beam welding process. The model considers the local temperature field, the effects of phase transition, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature. It was found that the Marangoni convection and the movement of the laser heat source are the dominant factors for the formation of the bulging-region. Good correlation between the numerically calculated and the experimentally observed weld bead shapes and the time-temperature curves on the upper and bottom surface were found. T2 - International Congress on Applications of Lasers & Electro-Optics (ICALEO®) CY - Orlando, USA DA - 14.10.2018 KW - Bulging effect KW - High power laser beam welding KW - Numerical modelling KW - Solidification cracking PY - 2019 SP - 1 EP - 8 AN - OPUS4-47139 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - The bulging effect and its relevance in high power laser beam welding N2 - The present work deals with the recently confirmed widening of the weld pool interface, known as a bulging effect, and its relevance in high power laser beam welding. A combined experimental and numerical approach is utilized to study the influence of the bulge on the hot cracking formation and the transport of alloying elements in the molten pool. A technique using a quartz glass, a direct-diode laser illumination, a high-speed camera, and an infrared camera is applied to visualize the weld pool geometry in the longitudinal section. The study examines the relevance of the bulging effect on both, partial and complete penetration, as well as for different sheet thicknesses ranging from 8 mm to 25 mm. The numerical analysis shows that the formation of a bulge region is highly dependent on the penetration depth and occurs more frequently during partial penetration above 6 mm and complete penetration above 8 mm penetration depth, respectively. The location of the bulge correlates strongly with the cracking location. The obtained experimental and numerical results reveal that the bulging effect increases the hot cracking susceptibility and limits the transfer of alloying elements from the top of the weld pool to the weld root. T2 - 18th Nordic Laser Materials Processing Conference (18th NOLAMP) KW - High-power laser beam welding KW - Bulge effect KW - Solidification cracking KW - Multi-physical modelling KW - Metal mixing PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-539149 VL - 1135 IS - 012003 SP - 1 EP - 11 PB - IOP Publishing AN - OPUS4-53914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Observation of the weld pool shape in partial penetration welding and its influence on solidification crack formation for high-power laser beam welding N2 - Solidification cracking is still a particular problem in laser beam welding, especially in the welding of thick-walled plates. In this study, the influence of weld pool geometry on solidification cracking in partial penetration welding of thick plates is a subject of discussion. For this purpose, a special experimental setup of steel and quartz glass in butt configuration and lateral with high speed camera was used to capture the weld pool shape. Additionally, laser beam welding experiments were carried out to compare the crack positions and the cross section with the high-speed camera observations. The results showed a bulge in the weld pool root separated from the upper region by a nick area. This leads to the fact that three different longitudinal lengths with different solidification areas are taking place. This temporal sequence of solidification strongly promotes the solidification cracks in the weld root. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Solidification cracking KW - Laser beam welding KW - Partial penetration PY - 2021 AN - OPUS4-53586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Biltgen, J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of Partial Penetration Laser Hybrid Welding Parameters on the Solidification Cracking for Thick-Walled Structures N2 - In this study, the influence of the welding speed and the arc power on the solidification crack formation for partial penetration laser hybrid welded Thick-Walled plates were investigated. Experimentally, a linear correlation between the welding velocity and the crack number was observed. That is by reducing the welding velocity the crack number was reduced. The reduced welding velocity showed a strong impact on stress, as the model demonstrated a very lower stress amount in comparison to the reference case. The reduction of the welding speed could be a helpful technique to reduce the hot cracking. The wire feed speed showed a very slight influence on the crack formation. That can be returned to the large distance between the critical region for cracking and the arc region. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Solidification cracking KW - Partial penetration laser hybrid welding KW - Numerical simulation PY - 2019 AN - OPUS4-48731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Üstündag, Ö. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and Numerical Study on the Influence of the Laser Hybrid Parameters in Partial Penetration Welding on the Solidification Cracking in the Weld Root N2 - In this study, the influence of the welding speed, the arc power and the laser focal position on the solidification crack formation for partial penetration laser hybrid welded thick-walled plates were investigated. Experimentally, a direct correlation between the welding speed and the crack number was observed. That is by reducing the welding velocity the crack number was decreased. The focal position shows also a significant influence on the crack number. Since by focusing the laser on the specimen surface, the crack number has been significantly diminished. The wire feed speed showed a very slight influence on the crack formation. That is due to the large distance between the critical region for cracking and the arc region. The numerical model shows a high-stress concentration in the weld root for both components (vertical and transversal). Numerically, the reduced welding speed showed a strong impact on stress, as the model demonstrated a lower stress amount by decreasing the welding speed. The solidification cracking in the weld root is a result of interaction between metallurgical and geometrical and thermomechanical factors. T2 - The 72nd IIW Annual Assembly and International Conference 2019 CY - Bratislava, Slovakia DA - 07.07.2019 KW - Laser hybrid welding KW - Solidification cracking KW - Thick-walled steels KW - Partial penetration KW - High-power laser beam PY - 2019 AN - OPUS4-48736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Pavlov, V. A1 - Volvenko, S. A1 - Rethmeier, Michael T1 - In situ determination of the critical staining condition for solidification cracking during laser beam welding N2 - Using a novel optical measurement technique together with the OF algorithm, a two-dimensional deformation analysis during welding was conducted. The OF technique was the first of its kind to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. The local critical strain and strain rate in vicinity of the solidification front has observed 1.57%, 28 %/s, respectively. T2 - Lane 2020 CY - Online meeting DA - 07.09.2020 KW - Optical measurement technique KW - Laser beam welding KW - Solidification cracking PY - 2020 AN - OPUS4-51741 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. T1 - Investigation of solidification cracking susceptibility of type 316L stainless steel during laser beam welding using an in-situ observation technique N2 - This technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Automatic identification of the cases that can be critical for the solidification crack formation the described procedure of the optical measurement allows the real material-dependent values of critical strain characterising the transition to hot cracking during laser welding processes to be determined. The local critical strain in vicinity of the solidification front has observed between 3.6 and 4.2%. T2 - Lasers in Manufacturing Conference 2017 CY - Munich, Germany DA - 26.06.2017 KW - Optical measurment technique KW - Critical strain KW - Solidification cracking KW - Laser beam Welding PY - 2017 AN - OPUS4-41242 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - About the origin of solidification cracking in laser welded thick-walled structures N2 - In this study, a three-dimensional CFD-simulation model was developed to simulate the fluid flow in the weld pool. The CFD-model showed a bulging region in the middle of the depth, which is separated from the top surface and bottom surface by two narrowing regions. It can be concluded that the interaction of the movement of the laser source with the Marangoni vortex leads to a teardrop shape at the upper and bottom surface of the workpiece. Additionally, it shows that the bulging in the weld is a result of the backflows on the upper and lower sides due to the thermo-capillary-driven flows. The weld pool shape was used as a heat source in a two-dimensional thermomechanical model, which allows a highly accurate transformation of the weld pool dimensions obtained from the CFD model. This developed technique allows the consideration of physical aspects, which cannot be considered when using traditional heat sources. The mechanical model has shown that the chronological order of the solidification of the weld has a significant influence on the nature and distribution of the stresses in the weld. High tensile stress has been observed in the bulging region, i.e. in the susceptible region for solidification cracking, when compared to the other narrowing regions, which show compressive stress. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - Laser beam welding KW - Solidification cracking KW - Numerical simulation KW - Weld pool geometry KW - CFD-model KW - FE-model PY - 2018 SP - W-6, 1 EP - 10 CY - Aswan, Egypt AN - OPUS4-46735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Gumenyuk, Andrey A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical simulation on the origin of solidification cracking in laser welded thick-walled structures N2 - One of the main factors affecting the use of lasers in the industry for welding thick structures is the process accompanying solidification cracks. These cracks mostly occurring along the welding direction in the welding center, and strongly affect the safety of the welded components. In the present study, to obtain a better understanding of the relation between the weld pool geometry, the stress distribution and the solidification cracking, a three-dimensional computational fluid dynamic (CFD) model was combined with a thermo-mechanical model. The CFD model was employed to analyze the flow of the molten metal in the weld pool during the laser beam welding process. The weld pool geometry estimated from the CFD model was used as a heat source in the thermal model to calculate the temperature field and the stress development and distributions. The CFD results showed a bulging region in the middle depth of the weld and two narrowing areas separating the bulging region from the top and bottom surface. The thermo-mechanical simulations showed a concentration of tension stresses, transversally and vertically, directly after the solidification during cooling in the region of the solidification cracking. T2 - 27TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS - METAL 2018 CY - Brno, Czech Republic DA - 23.05.2018 KW - Laser beam welding KW - Weld pool KW - Full penetration KW - Finite element method (FEM) KW - CFD model KW - Numerical simulation KW - Solidification cracking PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-450595 SN - 2075-4701 VL - 8 IS - 6 SP - 406, 1 EP - 15 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Biltgen, J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of Partial Penetration Laser Hybrid Welding Parameters on the Solidification Cracking for Thick-Walled Structures N2 - In this study, the influence of the welding speed and the arc power on the solidification crack formation for partial penetration laser hybrid welded Thick-Walled plates were investigated. Experimentally, a linear correlation between the welding velocity and the crack number was observed. That is by reducing the welding velocity the crack number was reduced. The reduced welding velocity showed a strong impact on stress, as the model demonstrated a very lower stress amount in comparison to the reference case. The reduction of the welding speed could be a helpful technique to reduce the hot cracking. The wire feed speed showed a very slight influence on the crack formation. That can be returned to the large distance between the critical region for cracking and the arc region. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Hybrid laser-arc welding KW - Solidification cracking KW - Thick-walled steel KW - Numerical simulation PY - 2019 SP - 1 EP - 7 PB - WLT Wissenschaftliche Gesellschaft Lasertechnik e.V AN - OPUS4-48733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Pavlov, V. A1 - Volvenko, S. A1 - Rethmeier, Michael T1 - In situ determination of the critical straining condition for solidification cracking during laser beam welding N2 - A self-restraint hot cracking test (free edge test) was used in combination with a novel optical measurement technique to determine the critical straining conditions for solidification cracking for the stainless steel grade 1.4828 (AISI 309). The Lucas-Kanade algorithm for the optical flow (OF) calculation was implemented to obtain the full-field displacement and then the full-field strain. The use of external laser illumination with appropriate filters allows to obtain good image quality with good contrast. The critical straining conditions required for solidification cracking can be obtained by means the proposed technique in the immediate vicinity of the solidification front. A very good repeatability was demonstrated for the used measurement technique. The critical straining conditions for solidification cracking for the tested steel und under this welding conditions has been detected KW - Laser beam welding KW - Solidification cracking KW - Critical strain KW - Critical strain rate KW - Optical flow PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-513070 SN - 2212-8271 VL - 94 SP - 666 EP - 670 PB - Elsevier AN - OPUS4-51307 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Bakir, Nasim T1 - Numerical simulation of solidification crack formation during laser beam welding of austenitic stainless steels under external load N2 - Solidification cracking phenomena taking place under Controlled Tensile Weldability (CTW) test conditions have already been investigated both experimentally and numerically via FEA in order to get a better understanding of the mechanisms of hot crack formation during laser beam welding of austenitic steel grades. This paper develops a three dimensional finite element model employing the contact elements technique to simulate the formation and propagation of solidification cracks during laser full penetration welding of fully austenitic stainless steel 1.4376. During the experimental procedure the resulting strain and displacement directed to the laser beam in the Close vicinity of the weld pool was measured at the surface of the workpiece using a Digital Image Correlation (DIC) technique with an external diode laser as an illuminating source. Local strain fields, global loads and crack lengths predicted by the model are in good Agreement with those observed in experiments. T2 - The 3rd IIW South‐East European Welding Congress CY - Timisoara, Romania DA - 03.06.2015 KW - Solidification cracking KW - DIC technique KW - Laser beam welding KW - Contact element KW - FEA PY - 2015 SN - 978-606-554-955-5 SP - 1 EP - 6 CY - Timisoara, Romania AN - OPUS4-36519 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of solidification cracking susceptibility of laser welded joints of austenitic stainless steels N2 - Laser welding is a widely established manufacturing process in many industry sectors. Solidification cracking represents one of the most inadequately solved problems in welding and has major economic implications. The avoidance of hot crack forms for most fusion welding processes poses a key challenge for an important range of metallic construction materials and affects not only the manufacturers of welding equipment and material manufacturers, but also a large number of customers using welding technologies, as well as welding technical standardization and research. Solidification cracking susceptibility was examined with the help of the Controlled Tensile Weldability Test (CTW) developed by Federal Institute for Materials Research and Testing (BAM), Berlin. The test is based on the fact that hot crack formation depends on a critical strain that emerges within a critical temperature range, the so called brittle temperature range (BTR). Using this test and defined investigation programme a centreline solidification crack was generated. By controlling the applied strain during the laser beam welding process, it was possible to determine the critical strain and strain rate that led to solidification cracking formation. The hot cracking susceptibility of the tested stainless steels was qualified and quantified. The results demonstrate that the crack length increases with increasing applied strain. Furthermore, the strain rate has a significant influence on the formation of the solidification crack. T2 - 3rd International conference in Africa and Asia CY - Luxor, Egypt DA - 02.11.2015 KW - Laser beam welding KW - Hot cracking KW - Solidification cracking KW - Hot cracking test PY - 2015 SP - A-29, 1 EP - A-29, 9 AN - OPUS4-36522 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of hot crack susceptibility of laser welded joints of four austenitic steels N2 - Laser welding is a widely established manufacturing process in many industry sectors. Solidification cracking represents one of the most inadequately solved problems in welding and has major economic implications. The avoidance of hot crack is for most fusion welding processes a key challenge for an important range of metallic construction materials and affects not only the manufacturers of welding equipment and material manufacturers, but also a large number of customers using welding technologies, as well as welding standardization and research. In this study a new investigation programme has been developed to qualify the hot cracking susceptibility of a variety of austenitic stainless steels. The results show the possibility of using this technique to determinate the critical values that occur with initiation of solidification cracking during laser beam welding T2 - The METEC and 2nd European Steel Technology and Application Days CY - Düsseldorf, Germany DA - 15.06.2015 KW - Laser beam welding KW - Hot cracking KW - Solidification cracking KW - Hot cracking test PY - 2015 SP - 1 EP - 5 AN - OPUS4-36525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical simulation of solidification crack formation during laser beam welding of austenitic stainless steels under external load N2 - Solidification cracking phenomena taking place under controlled tensile weldability (CTW) test conditions have already been investigated both experimentally and numerically via FEA in order to get a better understanding of the mechanisms of hot crack formation during laser beam welding of austenitic steel grades. This paper develops a threedimensional finite element model employing the contact element technique to simulate the formation and propagation of solidification cracks during laser full penetration welding of fully austenitic stainless steel 1.4376. During the experimental procedure, the resulting strain and displacement directed to the laser beam in the close vicinity of the weld pool was measured at the surface of the workpiece using a digital image correlation (DIC) technique with an external diode laser as an illuminating source. Local strain fields, global loads and crack lengths predicted by the model are in good agreement with those observed in experiments. KW - Solidification cracking KW - Finite element analysis KW - Imaging KW - Laser welding KW - Austenitic stainless steels PY - 2016 U6 - https://doi.org/10.1007/s40194-016-0357-1 SN - 0043-2288 SN - 1878-6669 VL - 60 IS - 5 SP - 1001 EP - 1008 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-37287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Using the optical measuring techniques to investigate the hot cracking susceptibility laser welded joints N2 - The safety of components or constructions is of great importance in the manufacturing and processing of metallic materials. Solidification cracking as well as the weldability of materials remain still for many years a highly contentious issues, particularly with regard to the causes of the hot crack formation. Many of studies have been conducted to determine the critical condition of occurrence of the solidification cracking. In this study different digital image correlation measuring techniques in conjunction with laser diodes as the illuminating source have been employed to measure the arising strain field during the laser welding process at the surface of the workpiece directed to the laser beam in the close vicinity of the weld pool. The Controlled Tensile Weldability test (CTW) was used to apply an external tensile load during the laser beam welding in order to generate the solidification cracks. The results showed that by means of those techniques it is possible to measure the strain field without any disturbances from the intense welding light or the smoke. Additionally, the strain and the strain rate as a critical factor determining solidification crack formation can be measured and analyzed. T2 - LiM 2015 - Lasers in manufacturing conference 2015 CY - Munich, Germany DA - 22.06.2015 KW - Solidification cracking KW - Laser beam wlding KW - Optical measuring technique KW - Hot cracking test PY - 2015 SP - 1 EP - 7 AN - OPUS4-35100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental study and numerical simulation of hot crack formation for novel laser weldability test. N2 - Laser beam welding is a widely established manufacturing process in several industries. The solidification cracking seriously effecting the safety of welded joints could arise during the beam welding of stainless steels caused by high solidification rates. In this study the controlled tensile weldability test (CTW) was used to investigate the solidification cracking susceptibility the fully austenitic stainless steels CrMnNi (1.4376), CrNi (1.4301), CrNiMo (1.4404) and CrNiSi (1.4828) during laser beam welding. The test facility allows welding of specimens with simultaneous application of tensile load along or cross to the welding direction while the speed of tensile force application is either constant or increases linearly. The tensile force increment and/or the displacement are set by means of a CNC controller. Trials were conducted by varying the ultimate tensile strain and cross-head speed while keeping the welding parameters constant. By observing the crack-no crack behaviour and estimating the generated crack length for each trail using a new optimized experimental procedure the influence of the two important conditions (the strain and the strain rate) for the formation of solidification cracks can be investigated, the critical values of strain and strain rate that are responsible for solidification cracking formation have been determined. In the present study a three-dimensional FEM using the contact element technique was developed to simulate the solidification cracking during laser full penetration welding under external load conditions for the steel 1.4376 in order to get a better understanding of the mechanisms of hot crack initiation and the theoretical results were compared to the experimental ones. By comparing the resulting solidification crack with simulated crack, it is possible to determine the critical condition of solidification crack formation in the region where the strains and the strain rates cannot be measured due to the high temperature. The results show a good agreement between numerical calculation and experiment. It is proposed that the solidification cracking susceptibility may be predicted by FEM analysis by using the correct mechanical and thermo-physical constants of the materials. T2 - BEAM TECHNOLOGIES & LASER APPLICATION CY - St. Petersburg, Russia DA - 21.09.2015 KW - Solidification cracking KW - Hot cracking test KW - FEM KW - Laser beam welding PY - 2015 SN - 978-5-7422-5150-7 SP - 55 EP - 68 AN - OPUS4-36615 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of solidification cracking susceptibility during laser beam welding using an in-situ observation technique N2 - In recent years, laser beam welding has found wide applications in many industrial fields. Solidification cracks are one of the most frequently encountered welding defects that hinder obtaining a safe weld joint. Decades of research have shown that one of the main causes of such cracks are the strain and the strain rate. Obtaining meaningful measurements of these strains has always been a major challenge for scientists, because of the specific environment of the measurement range and the many obstacles, as well as the high temperature and the plasma plume. In this study, a special experimental setup with a high-speed camera was employed to measure the strain during the welding process. The hot cracking susceptibility was investigated for 1.4301 stainless steel, and the critical strain required for solidification crack formation was locally and globally determined. KW - Solidification cracking KW - Laser welding KW - Optical measurement KW - In situ strain KW - Critical strain KW - Strain rate PY - 2018 U6 - https://doi.org/10.1080/13621718.2017.1367550 SN - 1362-1718 SN - 1743-2936 VL - 23 IS - 3 SP - 234 EP - 240 PB - Taylor and Francis AN - OPUS4-43992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of solidification cracking susceptibility during laser beam welding using an in-situ observation technique N2 - Using the novel optical measurement technique together with the optical flow algorithm, a twodimensional deformation analysis during welding has been conducted. This technique provides for the first time a measurement of the strain field locally in the immediate vicinity of the assumed solidification front. The described procedure of the opticalmeasurement allows to determine the real martial-dependent values of critical strain and strain rate characterising transition to the hot cracking during laser welding processes. The local critical strain that obtained in the assumed solidification showed that the local critical strain decreases as the strain rate increases. Moreover, this phenomenon has also been shown with results from the CTW-test, since the global strain decreases with an increase in the external strain rate. KW - Novel optical measurement KW - Local critical strain KW - Solidification cracking KW - Laser beam Welding PY - 2017 U6 - https://doi.org/10.1080/13621718.2017.1367550 SN - 1362-1718 SP - 1 EP - 7 PB - Taylor & Francis AN - OPUS4-42918 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Novel metrology to determine the critical strain conditions required for solidification cracking during laser welding of thin sheets N2 - This paper represents the results for proposed optical flow method based on the Lucas-Kanade (LK) algorithm applied to two different problems. The following observations can be made: - The estimated strain and displacement for conducted tensile test are generally very close to those measured with conventional DIC-technique. - The LK technique allows measurement of strain or displacement without special selection of a region of interest. Using a novel optical measurement technique together with the optical flow algorithm, a twodimensional deformation analysis during welding was conducted. This technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Additionally, the described procedure of the optical measurement allows the real material-dependent values of critical strain characterizing the transition to hot cracking during laser welding processes to be determined. T2 - Beam Technologies and Laser Application CY - Sankt Petersburg, Russia KW - Hot cracking test KW - Local critical strain KW - Solidification cracking KW - Laser beam welding KW - Novel metrology PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-467226 SN - 1742-6596 VL - 1109 IS - 012047 SP - 1 EP - 9 PB - IOP Publ. CY - Bristol AN - OPUS4-46722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical study on the influence of the laser hybrid parameters in partial penetration welding on the solidification cracking in the weld root N2 - In this study, the influence of the welding speed, the arc power, and the laser focal position on the solidification crack formation for partial penetration laser hybrid–welded thick-walled plates was investigated. The solidification cracking in the weld root is a result of interaction between metallurgical and geometrical and thermomechanical factors. Experimentally, a direct correlation between the welding speed and the crack number was observed. That is by reducing the welding velocity, the crack number was decreased. The focal position shows also a significant influence on the crack number. By focusing the laser on the specimen surface, the crack number has been significantly diminished. The wire feed speed showed a very slight influence on the crack formation. That is due to the large distance between the critical region for cracking and the arc region. The numerical model shows a high stress concentration in the weld root for both components (vertical and transversal). Numerically, the reduced welding speed showed a strong impact on stress, as the model demonstrated a lower stress amount by decreasing the welding speed. The metallurgical factors, such as the assumed accumulation of the low-melting eutectics in the weld root, should be a contribution for solidification cracking, where the tensile stress is acting. KW - Laser hybrid welding KW - Solidification cracking KW - Partial penetration welding KW - Weld root KW - Numerical simulation PY - 2020 U6 - https://doi.org/10.1007/s40194-020-00847-w VL - 64 SP - 501 EP - 511 PB - Springer AN - OPUS4-50625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huo, W. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Wolter, K. T1 - Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets N2 - The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency. KW - Convolutional neural network KW - Strain fields prediction KW - Laser beam welding KW - Solidification cracking PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-570565 VL - 13 IS - 5 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pavlov, V. A1 - Gumenyuk, Andrey A1 - Volvenko, S. A1 - Rethmeier, Michael A1 - Bakir, Nasim T1 - Investigation of solidification cracking susceptibility of type 316L stainless steel during laser beam welding using an in-situ observation technique N2 - Laser welding is a widely established manufacturing process in many industry sectors. Solidification cracking as well as the weldability of materials is still since many years a highly contentious issue, particularly regarding the causes of the hot crack formation. Many of studies have been conducted to determine the critical conditions of occurrence of the solidification cracking. In this study a 2D in-situ observation technique in conjunction with laser diodes as the illuminating source has been employed to measure the arising strain field during the laser beam welding process. For the first time the employed technique enabled the in-situ measurement of the transient strain field at the surface of the workpiece directed to the laser beam in the critical range, where the solidification cracking normally occurs. Thus the critical threshold strain values at high temperatures characterizing transition from crack free to crack concomitant welding process could be deduced. T2 - Lasers in Manufacturing Conference 2017 CY - Munich, Germany DA - 26.06.2017 KW - Laser beam Welding KW - Optical measurement technique KW - Critical strain KW - Solidification cracking PY - 2017 SP - 1 EP - 7 AN - OPUS4-41175 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pavlov, V.A. A1 - Zavialov, S.V. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Development of a measuring technology of strain field in welds N2 - In the article considered the problem of hot cracks occurrence during laser welding process. The main reason of their appearance is strain. The optical method for measuring full field strain locally near the solidification front during laser welding process is proposed. The proposed method of optical measurement allows to determine the real values of the critical strain for various materials characterizing the occurrence of hot cracks in laser welding process. T2 - 20th international conference "Digital signal processing and applications DSPA-2018" CY - Moskau, Russia DA - 28.03.2018 KW - Solidification cracking KW - Critical strain KW - Strain rate KW - Optical measurement KW - Laser welding KW - In situ strain PY - 2018 SN - 978-5-905278-33-4 SP - 749 EP - 754 AN - OPUS4-44910 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -