TY - JOUR A1 - Bakir, Nasim A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Novel metrology to determine the critical strain conditions required for solidification cracking during laser welding of thin sheets N2 - This paper represents the results for proposed optical flow method based on the Lucas-Kanade (LK) algorithm applied to two different problems. The following observations can be made: - The estimated strain and displacement for conducted tensile test are generally very close to those measured with conventional DIC-technique. - The LK technique allows measurement of strain or displacement without special selection of a region of interest. Using a novel optical measurement technique together with the optical flow algorithm, a twodimensional deformation analysis during welding was conducted. This technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Additionally, the described procedure of the optical measurement allows the real material-dependent values of critical strain characterizing the transition to hot cracking during laser welding processes to be determined. T2 - Beam Technologies and Laser Application CY - Sankt Petersburg, Russia KW - Hot cracking test KW - Local critical strain KW - Solidification cracking KW - Laser beam welding KW - Novel metrology PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-467226 SN - 1742-6596 VL - 1109 IS - 012047 SP - 1 EP - 9 PB - IOP Publ. CY - Bristol AN - OPUS4-46722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -