TY - CONF A1 - Baeßler, Matthias T1 - Aktuelle Entwicklungen und Herausforderungen bei Offshore-Gründungen mit Blick auf Forschung und Zulassung N2 - Der Seminarvortrag gibt einen Überblick über den Stand des Ausbaus Offshore Wind, der technischen Fragestellungen für die Tragstrukturen und Gründungen und die zu erwartenden Entwicklungen T2 - Geotechnische Seminarreihe des IBF/KIT CY - Karlsruhe, Germany DA - 23.11.2017 KW - Offshore-Gründungen KW - Windenergie PY - 2017 AN - OPUS4-43130 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zorzi, G. A1 - Baeßler, Matthias A1 - Gabrieli, Fabio T1 - Influence of structural stiffness on ratcheting convection cells of granular soil under cyclic lateral loading N2 - In granular soils, long-term cyclically loaded structures can lead to an accumulation of irreversible strain by forming closed convective cells in the upper layer of the bedding. The size of the convective cell, its formation and grain migration inside this closed volume have been studied with reference to different stiffness of the embedded structure and different maximum force amplitudes applied at the head of the structure. This relation was experimentally investigated by applying a cyclic lateral force to a scaled flexible vertical element embedded in a dry granular soil. The model was monitored with a camera in order to derive the displacement field by means of the PIV technique. Furthermore, the ratcheting convective cell was also simulated with DEM with the aim of extracting some micromechanical information. The main results regarded the different development, shape and size of the convection cell and the surface settlements. T2 - 1st International Conference on the Material Point Method, MPM 2017 CY - Deltares, Delft, The Netherlands DA - 10.01.2017 KW - Particle image velocimetry KW - Cyclic loading KW - Discrete element method KW - Ratcheting convective cell PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-395711 DO - https://doi.org/10.1016/j.proeng.2017.01.046 SN - 1877-7058 IS - 175 SP - 148 EP - 156 PB - Elsevier AN - OPUS4-39571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shamsuddoha, Md A1 - Hüsken, Götz A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten A1 - Thiele, Marc T1 - Critical factors affecting the capacity of cylindrical grouted connections in offshore energy structures N2 - Current trend suggests that global energy consumption will increase in the future. This growing energy demand and advancement of technology lead to explore all potential offshore fossil and non-fossil energy sources, necessitating erection of exploration and production structures, rigs, platforms and towers, which are susceptible to adverse environmental conditions along with their maintenances. Cylindrical grouted joints provide suitable connections between steel substructure and foundation in these offshore platforms and wind structures especially monopiles for ease of installation. However, these are composite connections with exterior sleeve, interior pile and infill grout. The capacity of these connections is affected by number of factors. The literature over last four decades by numerous researchers has shown the development of these connections with increasingly higher capacities and influences on these capacities due to various factors. This paper provides a comprehensive review on the factors affecting the connection capacity along with technical challenges for the future. Critical aspects and shortcomings of the current connection systems and potential solutions may be sought after for these issues are also discussed. T2 - 36th International Conference on Ocean, Offshore and Arctic Engineering CY - Trondheim, Norway DA - 25.06.2017 KW - Offshore wind energy KW - Grouted connection KW - Joint capacity KW - Shear keys PY - 2017 SN - 978-0-7918-5766-3 DO - https://doi.org/10.1115/OMAE2017-62510 VL - 3B SP - UNSP V03BT02A037, 1 EP - 10 AN - OPUS4-42387 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Baeßler, Matthias A1 - Cuéllar, Pablo A1 - Georgi, Steven A1 - Karabeliov, Krassimire A1 - Rücker, Werner A1 - Johnsen, Björn ED - Durstewitz, M. ED - Lange, B. T1 - Uncharted Territory on the Seabed - Monitoring Procedures and Assessment Model for the Foundations of Offshore Wind Turbines N2 - Offshore wind turbines enter unknown territory, especially where the foundations are concerned. This is because offshore wind power can only make use of the experience from the common offshore constructions used by the oil and gas industry to a limited extent. The offshore wind industry has tried to reduce foundation dimensions, especially the pile lengths, as much as possible compared with those of the oil and gas industry. This is because with the large number of wind turbines involved it can provide considerable economic advantages. On the other hand, the stability of the foundations is additionally at risk because due to the much larger number of cyclic loads they are subjected to it is very difficult to predict how they will behave. Since offshore wind farms are manufactured in series, every systematic fault in the foundation acts as a series fault for a large number of turbines. This calls for monitoring – and the right dimensions of pile foundation, the most common type of foundations used for wind turbines KW - Offshore wind turbines KW - Field tests KW - Axial pile capacity PY - 2017 SN - 978-3-662-53178-5 DO - https://doi.org/10.1007/978-3-662-53179-2 SP - 61 EP - 67 PB - Springer AN - OPUS4-39341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Rücker, Werner A1 - Cuéllar, Pablo A1 - Georgi, Steven A1 - Karabeliov, Krassimire A1 - Baeßler, Matthias A1 - Johnsen, Björn ED - Durstewitz, M. ED - Lange, B. T1 - Please Avoid Tilting - Application-Oriented Design and Monitoring Model for Foundation Structures Subjected to Cyclic Loads N2 - A great deal is possible, even on the seabed. Together, wind and waves shake the foundations of the offshore wind turbines. "ere is also the “normal” current and ebb and #ow of the tides that are so distinctive in the North Sea. Pore water pressure can also occur on the seabed, loosening it. Where monopiles are involved, the worst case is that the stability of the whole turbine can be altered – even if such a monopile rammed into the seabed has a diameter of up to eight metres. Over half the planned offshore wind turbines in the North and Baltic Seas are to have monopile foundations, and over 40 % are to have multi-pile foundations, designed for example as a tripod. "is is why pile foundations and their loads deserve special attention. For one thing above all is to be avoided in plant operations, and that is the risk of turbine tilt. KW - Pile foundations KW - Offshore wind turbines KW - Cyclic loads PY - 2017 SN - 978-3-662-53178-5 DO - https://doi.org/10.1007/978-3-662-53179-2 SP - 53 EP - 59 PB - Springer AN - OPUS4-39340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -