TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts JF - International journal of heat and mass transfer N2 - A multi-physics numerical model was developed to investigate the influence of a steady magnetic field aligned perpendicular to the welding direction during partial penetration high power laser beam welding of aluminium in downhand position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were successfully solved with the finite element differential equation solver COMSOL Multiphysics 4.2. The implemented material model used temperature-dependent properties up to evaporation temperature. Marangoni convection in the surface region of the weld pool, natural convection due to the gravitational field and latent heat of solid–liquid phase transition were taken into account. Solidification was modelled by the Carman–Kozeny equation for porous media morphology. The flow pattern in the melt as well as the weld bead geometry were significantly changed by the induced Lorentz force distribution in the liquid metal. It reveals that the application of a steady magnetic field to laser beam welding with corresponding Hartmann numbers Ha2 ≈ 104 allows for a suppression of the characteristic wineglass-shape of the weld cross section caused by thermocapillary flow. The numerical results are in good agreement with experimental results obtained with welding of AlMg3 with a 16 kW disc laser. The steady magnetic field was delivered by permanent magnets mounted on both lateral sides of the weld specimen. The maximum magnetic flux density was around 500 mT. It shows, that the applied magnetic field has a predominant dissipating effect on the weld pool dynamics independently of its polarity. KW - Electromagnetic weld pool control KW - Hartmann effect KW - Laser beam welding KW - Lorentz force KW - Marangoni flow KW - Natural convection PY - 2013 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.015 SN - 0017-9310 VL - 60 SP - 309 EP - 321 PB - Elsevier CY - Amsterdam AN - OPUS4-27655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical investigation of an electromagnetic weld pool control for laser beam welding JF - Physics procedia N2 - The objective of this study was to investigate the influence of externally applied magnetic fields on the weld quality in laser beam welding. The optimization of the process parameters was performed using the results of computer simulations. Welding tests were performed with up to 20 kW laser beam power. It was shown that the AC magnet with 3 kW power supply allows for a prevention of the gravity drop-out for full penetration welding of 20 mm thick stainless steel plates. For partial penetration welding it was shown that an0.5 T DC magnetic field is enough for a suppression of convective flows in the weld pool. Partial penetration welding tests with 4 kW beam power showed that the application of AC magnetic fields can reduce weld porosity by a factor of 10 compared to the reference joints. The weld surface roughness was improved by 50%. KW - Laser beam welding KW - Electromagnetic weld pool support KW - Hartmann effect KW - Electromagnetic rectification PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-314405 DO - https://doi.org/10.1016/j.phpro.2014.08.006 SN - 1875-3892 VL - 56 SP - 515 EP - 524 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-31440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Fluid flow simulation of the influence of a steady magnetic field on the weld pool dynamics in deep penetration laser beam welding of aluminium JF - Journal of iron and steel research international N2 - A multi-physics numerical model was developed to investigate the influence of a steady magnetic field during partial penetration keyhole laser beam welding of an aluminum plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved with the finite element differential equation solver COMSOL Multiphysics. The magnetic field was aligned perpendicularly to the welding direction. The main objective of these simulations was to estimate the critical value of the magnetic field needed to suppress convective flows in the weld pool during high-power (up to 20 kW) laser beam welding of aluminum alloys with up to 20 mm deep weld pool. It reveals that steady magnetic fields with corresponding Hartmann numbers Ha^2 ~ 10^4 based on the half-width of the weld pool can effectively suppress convective flows in the weld pool. Moreover, the typically occurring wineglass-shape of the weld cross section caused by thermo-capillary flow is weakened. KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection KW - Hartmann effect PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 467 EP - 470 PB - Ed. Board CY - Beijing AN - OPUS4-26914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Magnets improve quality of high-power laser beam welding JF - Welding design & fabrication KW - Laser beam welding KW - Hartmann effect KW - Marangoni flow PY - 2013 UR - http://weldingdesign.com/processes/magnets-improve-quality-high-power-laser-beam-welding SN - 0043-2253 SP - 1 EP - 3(?) PB - Penton/IPC CY - Cleveland, Ohio AN - OPUS4-29412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Magnets improve quality of high-power laser beam welding JF - Industrial laser solutions for manufacturing N2 - Welding is one of the most critical operations for the construction of reliable metal structures in everything from ships to reactor vessels. When welds fail, the entire structure often fails—so expectations on weld quality have never been higher. Any process that uses a localized heat source, such as welding, is likely to result in some distortion. The welding process of very thick metal components is not inherently stable and is barely controllable without external forces. KW - Laser beam welding KW - Hartmann effect KW - Electromagnetic weld control KW - Finite element simulation PY - 2015 UR - http://digital.industrial-lasers.com/industriallasers/20150304#pg1 SN - 1523-4266 SN - 0888-935X VL - 30/2 IS - March/April SP - 10 EP - 12 PB - Pennwell CY - Tulsa, Okla., USA AN - OPUS4-33037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields JF - International journal of thermal sciences N2 - Controlling the dynamics in the weld pool is a highly demanding challenge in deep-penetration laser beam welding with modern high power laser systems in the multi kilowatt range. An approach to insert braking forces in the melt which is successfully used in large-scaled industrial applications like casting is the so-called Hartmann effect due to externally applied magnetic fields. Therefore, this study deals with its adaptation to a laser beam welding process of much smaller geometric and time scale. In this paper, the contactless mitigation of fluid dynamic processes in the melt by steady magnetic fields was investigated by numerical simulation for partial penetration welding of aluminium. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved based on temperature-dependent material properties up to evaporation temperature for two different penetration depths of the laser beam. The Marangoni convection in the surface region of the weld pool and the natural convection due to the gravitational forces were identified as main driving forces in the weld pool. Furthermore, the latent heat of solide-liquid phase transition was taken into account and the solidification was modelled by the Carman-Kozeny equation for porous medium morphology. The results show that a characteristic change of the flow pattern in the melt can be achieved by the applied steady magnetic fields depending on the ratio of magnetic induced and viscous drag. Consequently, the weld bead geometry was significantly influenced by the developing Lorentz forces. Welding experiments with a 16 kW disc laser with an applied magnetic flux density of around 500 mT support the numerical results by showing a dissipating effect on the weld pool dynamics. KW - Electromagnetic weld pool control KW - Hartmann effect KW - Laser beam weliding KW - Lorentz force KW - Marangoni flow KW - Natural convection KW - Aluminium PY - 2016 DO - https://doi.org/10.1016/j.ijthermalsci.2015.10.030 SN - 1290-0729 VL - 101 SP - 24 EP - 34 PB - Elsevier CY - Paris AN - OPUS4-35034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical simulation of electromagnetic melt control systems in high power laser beam welding T2 - ICALEO 2013 - 32nd International congress on applications of lasers & electro-optics (Proceedings) N2 - The availability of laser sources with a power of 20 kW upwards prepared the ground for laser beam welding of up to 20 mm thick metal parts. Challenges are the prevention of gravity-driven melt drop-out and the control of the dynamics mainly due to the Marangoni flow. Coupled numerical turbulent fluid flow, thermal and electromagnetic simulations and experimental validation with aluminum AlMg3 and stainless steel AISI 304 were done for alternating and steady magnetic fields perpendicular to the process direction. The first can prevent melt sagging in full-penetration welding by Lorentz forces in the melt induced by an AC magnet located below the weld specimen counteracting gravitational forces. The latter controls the Marangoni flow by Lorentz braking forces in the melt by the so-called Hartmann effect. The simulations show that the drop-out of aluminum and stainless steel can be avoided for 20 mm thick fullpenetration welds with moderate magnetic flux densities of 70 mT and 95 mT at oscillation frequencies of 450 Hz and 3 kHz, respectively. The experiments are in good agreement but show somewhat larger values for steel, whose weakly ferromagnetic properties are a possible reason. The investigations with steady magnetic fields reveal the possibility to mitigate the dynamics significantly beginning with around 500 mT at laser penetration depths of approximately 20 mm. T2 - ICALEO 2013 - 32nd International congress on applications of lasers & electro-optics CY - Miami, FL, USA DA - 2013-10-06 KW - Laser beam welding KW - Electromagnetic weld pool support KW - Hartmann effect PY - 2013 SN - 978-0-912035-98-7 IS - Paper 401 SP - 50 EP - 59 AN - OPUS4-29466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -