TY - JOUR A1 - Babutzka, Martin A1 - Heyn, A. T1 - Corrosion investigations by using gel-type electrolytes JF - IOP Conf. Series: Materials Science and Engineering N2 - Limitations are encountered regarding the electrolyte when studying atmospheric corrosion reactions on materials that form protective layers on their surface or tend to passivate. For example, the reconstruction of a thin wet film, as well as the interpretation of electrochemical measurements in so-called bulk solutions (a "mass" of electrolyte), often proves to be difficult in view of corrosion behavior under atmospheric conditions. A new approach to this problem in corrosion research includes the use of gel-type electrolytes as an alternative to bulk electrolytes. Gel-type electrolytes form a thin wet film on the surface of the material, whereby the naturally formed protective layer is affected similar to atmospheric conditions and can be examined in an almost non-destructive way. Through electrochemical instrumentation specific values such as polarization resistances and corrosion currents can be determined providing information on kinetics of surface layer formation and stability of surface layers formed under the influence of a thin wet film. Thus, new test methods can be developed that supply a better understanding of corrosion processes in specific atmospheres. In this article different zinc coatings and aluminium alloys were investigated, their naturally formed protective layers were electrochemically characterized and corrosion relevant values were determined by using a gel pad based on polysaccharide. Corrosion relevant values allowed the differentiation of various coating systems and could describe the current protective effect provided by the coating. It is shown that gel-type electrolytes influence protective layers and coatings considerably less than corresponding bulk electrolytes and that an atmospheric wet film is approached by these test conditions. From the results it is evident that gel-type electrolytes represent a viable and promising field in corrosion research. T2 - 18th Chemnitz Seminar on Materials Engineering – 18. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany KW - Corrosion investigations KW - Gel-type electrolytes KW - Zinc coatings PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-366680 DO - https://doi.org/10.1088/1757-899X/118/1/011002 VL - 118 SP - 17 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-36668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babutzka, Martin A1 - Heyn, A. T1 - Dynamic tafel factor adaption for the evaluation of instantaneous corrosion rates on zinc by using gel-type electrolytes JF - IOP Conf. Series: Materials Science and Engineering N2 - The paper presents a new method for the determination and evaluation of tafel factors using gel-type electrolytes and electrochemical frequency modulation technique (EFM). This relatively new electrochemical method offers the possibility to determine both polarization resistances and tafel factors within one measurement and in short measuring intervals. Starting from a comprehensive parameter study it is shown that a direct relationship between the two values exists that can be described mathematically. This contribution presents the determined tafel factors for the system gel-type electrolyte/zinc and discusses their applicability and their limits. T2 - 19th Chemnitz Seminar on Materials Engineering – 19. Werkstofftechnisches Kolloquium CY - Chemnitz, Germany DA - 16.03.2017 KW - Gel-type electrolytes KW - Gelartige Elektrolyte KW - Zinc KW - Zink KW - Stern Geary constant KW - Stern-Geary-Konstante PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-394324 UR - http://iopscience.iop.org/article/10.1088/1757-899X/181/1/012021/pdf DO - https://doi.org/10.1088/1757-899X/181/1/012021 SN - 1757-899X SN - 1757-8981 VL - 181 IS - Conference 1 SP - Article UNSP 012021, 1 EP - 11 PB - IOP Publishing CY - Bristol, UK AN - OPUS4-39432 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Langklotz, U. A1 - Babutzka, Martin A1 - Schneider, M. A1 - Burkert, Andreas T1 - The combination of minimally invasive electrochemical investigations and FTIR‐spectroscopy to analyze atmospheric corrosion product layers on zinc JF - Materials and Corrosion N2 - The present work describes the combination of electrochemical investigations by using a gel‐type electrolyte with Fourier‐transformed infrared spectroscopy to investigate partially extremely thin corrosion product films on titanium‐zinc. The gel pad method enables the determination of corrosion relevant parameters such as the potential and the linear polarization resistance without altering the corrosion product layers, which are extremely prone to re‐dissolution when freshly formed. Complementary infrared spectroscopy enables the determination of main compounds of even very thin surface layers of few tenth of nanometers with a certain lateral resolution. It was found that zinc forms mostly zinc carboxy‐hydroxides such as hydrozincite, under various exposure conditions. The protective properties of these hydrozincite layers depend on the structure of the corrosion product film rather than on its thickness. In mid‐term exposure tests, shallow corrosion pits were found even in the absence of corrosive agents such as chloride. KW - Gel-type electrolytes KW - Gelartige Elektolyte KW - Zinc coatings KW - Zinkdeckschichten KW - Korrosionsprüfung KW - Corrosion testing KW - FT-IR PY - 2019 DO - https://doi.org/10.1002/maco.201810696 SN - 0947-5117 SN - 1521-4176 VL - 70 IS - 7 SP - 1314 EP - 1325 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-47728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -