TY - JOUR A1 - Hörold, Andreas A1 - Schartel, Bernhard A1 - Trappe, Volker A1 - Korzen, Manfred A1 - Bünker, J. T1 - Fire stability of glass-fibre sandwich panels: The influence of core materials and flame retardants N2 - Fire resistance has become a key property for structural lightweight sandwich components in aviation, shipping, railway vehicles, and construction. The development of future composite materials and components demands adequate test procedures for simultaneous application of compression and fully developed fire. Therefore an intermediate-scale approach (specimen size = 500 mm x 500 mm) is applied with compressive loads (up to 1 MN) and direct application of a burner to one side of the specimens, as established in aviation for severe burn-through tests. The influence of different core structures (polyvinylchloride foam, polyisocyanorate foam reinforced by stitched glass bridges, and balsa wood) was investigated for glass-fibre-reinforced sandwich specimens with and without flame retardants applied on the fabrics, in the matrix, and on surface for each specimen at the same time. Times to failure were increased up to a factor of 4. The intumescent coating prolongs the time to failure significantly. What is more, using the intrinsic potential of the front skin together with the core to protect a load bearing back skin in sandwich panels, the design of the core – here using the wood core – is the most promising approach. KW - Fire resistance KW - Fire stability KW - Glass-fibre-reinforced plastics KW - Composite KW - Core materials PY - 2017 U6 - https://doi.org/10.1016/j.compstruct.2016.11.027 SN - 0263-8223 SN - 1879-1085 VL - 160 SP - 1310 EP - 1318 PB - Elsevier AN - OPUS4-38622 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -