TY - JOUR A1 - Santos de Freitas, M. A1 - Araghi, R. R. A1 - Brandenburg, E. A1 - Leiterer, Jork A1 - Emmerling, Franziska A1 - Folmert, K. A1 - Gerling-Driessen, U. I. M. A1 - Bardiaux, B. A1 - Böttcher, C. A1 - Pagel, K. A1 - Diehl, A. A1 - v. Berlepsch, H. A1 - Oschkinat, H. A1 - Koksch, B. T1 - The protofilament architecture of a de novo designed coiled coil-based amyloidogenic peptide N2 - Amyloid fibrils are polymers formed by proteins under specific conditions and in many cases they are related to pathogenesis, such as Parkinson’s and Alzheimer’s diseases. Their hallmark is the presence of a β-sheet structure. High resolution structural data on these systems as well as information gathered from multiple complementary analytical techniques is needed, from both a fundamental and a pharmaceutical perspective. Here, a previously reported de novo designed, pH-switchable coiled coil-based peptide that undergoes structural transitions resulting in fibril formation under physiological conditions has been exhaustively characterized by transmission electron microscopy (TEM), cryo-TEM, atomic force microscopy (AFM), wide-angle X-ray scattering (WAXS) and solid-state NMR (ssNMR). Overall, a unique 2-dimensional carpet-like assembly composed of large coexisiting ribbon-like, tubular and funnel-like structures with a clearly resolved protofilament substructure is observed. Whereas electron microscopy and scattering data point somewhat more to a hairpin model of β-fibrils, ssNMR data obtained from samples with selectively labelled peptides are in agreement with both, hairpin structures and linear arrangements. KW - Amyloid KW - Elektronenmikroskopie PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-458713 UR - https://www.sciencedirect.com/science/article/pii/S1047847718301333 DO - https://doi.org/10.1016/j.jsb.2018.05.009 SN - 1047-8477 VL - 203 IS - 3 SP - 263 EP - 272 PB - Elsevier AN - OPUS4-45871 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Donskyi, Ievgen A1 - Drüke, M. A1 - Silberreis, K. A1 - Lauster, D. A1 - Ludwig, K. A1 - Kühne, C. A1 - Unger, Wolfgang A1 - Böttcher, C. A1 - Herrmann, A. A1 - Dernedde, J. A1 - Adeli, M. A1 - Haag, R. T1 - Interactions of fullerene-polyglycerol sulfates at viral and cellular interfaces N2 - Understanding the mechanism of interactions of nanomaterials at biointerfaces is a crucial issue to develop new antimicrobial vectors. In this work, a series of water-soluble fullerene-polyglycerol sulfates (FPS) with different fullerene/polymer weight ratios and varying numbers of polyglycerol sulfate branches are synthesized, characterized, and their interactions with two distinct surfaces displaying proteins involved in target cell recognition are investigated. The combination of polyanionic branches with a solvent exposed variable hydrophobic core in FPS proves to be superior to analogs possessing only one of these features in preventing interaction of vesicular Stomatitis virus coat glycoprotein (VSV-G) with baby hamster kidney cells serving as a model of host cell. Interference with L-selectin-ligand binding is dominated by the negative charge, which is studied by two assays: a competitive surface plasmon resonance (SPR)-based inhibition assay and the leukocyte cell (NALM-6) rolling on ligands under flow conditions. Due to possible intrinsic hydrophobic and electrostatic effects of synthesized compounds, pico- to nanomolar half maximal inhibitory concentrations (IC50) are achieved. With their highly antiviral and anti-inflammatory properties, together with good biocompatibility, FPS are promising candidates for the future development towards biomedical applications. KW - Fullerene-Polyglycerol Sulfates KW - Fullerene KW - Biointerfaces KW - XPS PY - 2018 DO - https://doi.org/10.1002/smll.201800189 SN - 1613-6829 SN - 1613-6810 VL - 14 IS - 17 SP - 1800189, 1 EP - 7 PB - WILEY-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-44573 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -