TY - JOUR A1 - Konert, Florian A1 - Wieder, Frank A1 - Nietzke, Jonathan A1 - Meinel, Dietmar A1 - Böllinghaus, Thomas A1 - Sobol, Oded T1 - Evaluation of the impact of gaseous hydrogen on pipeline steels utilizing hollow specimen technique and μCT JF - International Journal of Hydrogen Energy N2 - The high potential of hydrogen as a key factor on the pathway towards a climate neutral economy, leads to rising demand in technical applications, where gaseous hydrogen is used. For several metals, hydrogen-metal interactions could cause a degradation of the material properties. This is especially valid for low carbon and highstrength structural steels, as they are commonly used in natural gas pipelines and analyzed in this work. This work provides an insight to the impact of hydrogen on the mechanical properties of an API 5L X65 pipeline steel tested in 60 bar gaseous hydrogen atmosphere. The analyses were performed using the hollow specimen technique with slow strain rate testing (SSRT). The nature of the crack was visualized thereafter utilizing μCT imaging of the sample pressurized with gaseous hydrogen in comparison to one tested in an inert atmosphere. The combination of the results from non-conventional mechanical testing procedures and nondestructive imaging techniques has shown unambiguously how the exposure to hydrogen under realistic service pressure influences the mechanical properties of the material and the appearance of failure. KW - Energy Engineering and Power Technology KW - Condensed Matter Physics KW - Fuel Technology KW - Renewable Energy, Sustainability and the Environment KW - µCT KW - Hollow Specimen Technique KW - Hydrogen Embrittlement PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-595077 DO - https://doi.org/10.1016/j.ijhydene.2024.02.005 SN - 0360-3199 VL - 59 SP - 874 EP - 879 PB - Elsevier B.V. AN - OPUS4-59507 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Cross, Carl T1 - Obituary: Prof. Dr.-Ing. Hans Hoffmeister JF - Welding in the World N2 - On November 3, 2023, our dear colleague, Prof. Dr.-Ing. Hans Hoffmeister, born in 1932 in Kassel, Germany, passed away in Ahrensburg, near Hamburg, Germany. KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-594160 DO - https://doi.org/10.1007/s40194-023-01675-4 SP - 1 EP - 2 PB - Springer Science and Business Media LLC AN - OPUS4-59416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drexler, A.-K. A1 - Konert, Florian A1 - Nietzke, Jonathan A1 - Hodžić, E. A1 - Pastore, S. A1 - Domitner, J. A1 - Rhode, Michael A1 - Sommitsch, C. A1 - Böllinghaus, Thomas T1 - Effect of Tensile Loading and Temperature on the Hydrogen Solubility of Steels at High Gas Pressure JF - Steel Research International N2 - The hydrogen solubility in ferritic and martensitic steels is affected by hydrostatic stress, pressure, and temperature. In general, compressive stresses decrease but tensile stresses increase the hydrogen solubility. This important aspect must be considered when qualifying materials for high‐pressure hydrogen applications (e.g., for pipelines or tanks) by using autoclave systems. In this work, a pressure equivalent for compensating the effect of compressive stresses on the hydrogen solubility inside of closed autoclaves is proposed to achieve solubilities that are equivalent to those in pipelines and tanks subjected to tensile stresses. Moreover, it is shown that the temperature effect becomes critical at low temperatures (e.g., under cryogenic conditions for storing liquid hydrogen). Trapping of hydrogen in the microstructure can increase the hydrogen solubility with decreasing temperature, having a solubility minimum at about room temperature. To demonstrate this effect, the generalized law of the hydrogen solubility is parameterized for different steels using measured contents of gaseous hydrogen. The constant parameter sets are verified and critically discussed with respect to the high‐pressure hydrogen experiments. KW - Hydrogen KW - Solubility KW - Temperature KW - Tensile loading KW - Analytical calculation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586701 DO - https://doi.org/10.1002/srin.202300493 SN - 1611-3683 SP - 1 EP - 9 PB - Wiley AN - OPUS4-58670 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Böllinghaus, Thomas A1 - Wentland, Eva A1 - Jaßmann, R. A1 - Keller, R. A1 - Wolfrum, Anne T1 - Conservation of the Shaft #1 Headgear at the Tsumeb Mine, Namibia: Corrosion Protection JF - Studies in conservation N2 - The Tsumeb Mine in Namibia represents one of the best-preserved mining sites in the world and is rapidly gaining cross-disciplinary interest among cultural and engineering scientists. Most of the open pit and the shaft mining equipment are still in place, including the ore processing units and the local power plant. The mining area thus deserves recognition as an industrial world heritage site, especially due to the rarity of such locations on the African continent. The Shaft #1 headgear, built in 1924, represents one of the oldest known riveted steel headgears of the Promnitz design worldwide. In contrast to similar steel structures located in the northern hemisphere, it has been exposed to a different rural semi-arid climate since it is located in the Otavi Mountain Land, characterized by semi-annual change of rainy and dry seasons. Parts of the Shaft #1 headgear have remained largely untouched for more than 70 years. Besides its outstanding heritage value, it thus also represents an interesting object for studying the composition of corrosion layers formed on mild steel surfaces when exposed to continental and industrial mining atmospheres. To find a suitable transparent corrosion prevention coating, various on-site coating samples were evaluated after 11 months of outdoor exposure, including Owatrol Oil®, which is based on natural oil and alkyd resin with strong wicking potential. The substance is frequently applied for the conservation of single components but is not yet widely used on large steel structures in the field of industrial heritage conservation. However, it represented the most stable anti-corrosion coating under the local atmospheric conditions in the on-site tests. Thus, the suitability of Owatrol Oil® as a transparent coating for corrosion protection of riveted mild steel structures in such climates was further investigated as a more recent approach for the conservation of large steel structures. Since the protective coatings are exposed to strong UV radiation in the local climate, the addition of a specific UV stabilizer mixture was also tested. For such laboratory tests, two mild steel samples were taken. The first one originated from a diagonal strut of the 1920s and the second one from a handrail mounted in the early 1960s. Using corresponding high-resolution scanning electron microscopy (HR-SEM) and energy-dispersive X-ray spectroscopy (EDX) it was found that the corrosion layers are predominantly composed of lepidocrocite and goethite. A weathering program simulating the specific environmental conditions at Tsumeb in a UV climate chamber was developed and the corrosion resistance of the mild steel surface was subsequently evaluated by potentiodynamic measurements. Such tests proved to be a fast and reliable procedure for ranking the corrosion resistance of the old mild steels. It was found that the long-term corrosion layers already provide significant protection against further corrosion in the simulated environment. However, the study also showed that this can be further improved by the application of the Owatrol Oil® as a protective coating that also seals crevices. The addition of the UV stabilizers, however, led to a significant deterioration in corrosion protection, even in comparison to that of the uncoated long-term corrosion layers on the surface. Regular overcoating seems more advisable for the long-term preservation of the Shaft #1 headgear than modifying the Owatrol Oil® Coating with the tested UV-stabilizing additives. KW - Potentiodynamic measurements KW - Mining head gear KW - Mild steels KW - Chemical composition KW - Characterization of corrosion layers KW - Alkyd resin-based coating KW - UV-blocker addition KW - Weathering tests PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541476 DO - https://doi.org/10.1080/00393630.2021.2004007 SN - 0039-3630 SP - 1 EP - 15 PB - Taylor & Francis Online AN - OPUS4-54147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böllinghaus, Thomas A1 - Rhode, Michael A1 - Falkenreck, T. ED - Bender, B. ED - Göhlich, D. T1 - Korrosion und Korrosionsschutz T2 - DUBBEL - Taschenbuch für den Maschinenbau: Grundlagen und Tabellen N2 - Das Kapitel beginnt mit einer kurzen Einführung über die Korrosion (Wechselwirkung zwischen einem Metall, einer korrosiven Umgebung und der der jeweiligen Konstruktion). Im zweiten Abschnitt werden die wichtigsten Formen der wässrigen elektrochemischen Korrosion (Flächenkorrosion, galvanische, selektive und interkristalline Korrosion sowie Loch- und Spaltkorrosion) betrachtet. Darüber hinaus wird die elektrochemische Korrosion unter mechanischer Belastung betrachtet (Spannungsrisskorrosion, wasserstoffunterstützte Rissbildung, Korrosionsermüdung), sowie Sonderformen der Korrosion (Erosion, Fretting und mikrobiologisch induzierte Korrosion). Der dritte Abschnitt befasst sich mit der chemischen und Hochtemperaturkorrosion (Oxidation, Aufkohlung, Hochtemperatur-Wasserstoffangriff, Aufschwefelung, Nitrierung, Halogenierung). Zusätzlich enthält das Kapitel Maßnahmen zur Vermeidung der Korrosion. KW - Korrosion KW - Korrosionsschutz KW - Spannungsrisskorrosion KW - Wasserstoff KW - Loch- u. Spaltkorrosion PY - 2021 SN - 978-3-662-59710-1 DO - https://doi.org/10.1007/978-3-662-59711-8_34 VL - 1 SP - 691 EP - 725 PB - Springer-Verlag GmbH, ein Teil von Springer Nature CY - Berlin ET - 26 AN - OPUS4-52156 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Böllinghaus, Thomas A1 - Rhode, Michael A1 - Falkenreck, T. ED - Grote, K.-H. ED - Hefazi, H. T1 - 6. Corrosion and Corrosion Resistance T2 - Springer Handbook of Mechanical Engineering N2 - The chapter starts with a brief introduction about corrosion, which is defined as the interdependency between a metal, a corrosive environment, and the respective component design. The second section introduces the most important forms of aqueous electrochemical corrosion (uniform corrosion, galvanic corrosion, selective and intergranular corrosion, and finally pitting and crevice corrosion in the case of passive layer forming metals). In addition, electrochemical corrosion under applied mechanical load is introduced (stress corrosion cracking, hydrogen-assisted cracking, corrosion fatigue), as well as special forms of corrosion (erosion, fretting, and microbiologically induced corrosion). The third section of this chapter introduces (mostly dry) chemical corrosion and high-temperature corrosion (oxidation, carburization, high-temperature hydrogen attack, sulfurization, nitriding, halogenation). As in the case of electrochemical corrosion, chemical corrosion can also be superimposed by mechanical loads. Finally, general facts on the testing of corrosion are introduced. KW - Corrosion KW - Corrosion testing KW - Handbook KW - Electrochemical corrosion KW - Chemical corrosion PY - 2021 SN - 978-3-030-47035-7 DO - https://doi.org/10.1007/978-3-030-47035-7_6 VL - 2021 SP - 185 EP - 213 PB - Springer Nature Switzerland AG CY - Cham (CH) ET - 2nd Edition AN - OPUS4-52423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mayr, P. A1 - Nitsche, A. A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Hydrogen diffusion in creep-resistant 9% Cr P91 multi-layer weld metal JF - Welding in the World N2 - Welded components of P91 9% Cr steel demand for careful welding fabrication with necessary post weld heat treatment (PWHT). Before the PWHT, a hydrogen removal heat treatment is necessary for avoidance of hydrogen assisted cracking (HAC). In this context, the microstructure and temperature-dependent hydrogen diffusion is important, and reliable diffusion coefficients of P91 weld metal are rare. For that reason, the diffusion behavior of P91 multi-layer weld metal was investigated for as-welded (AW) and PWHT condition by electrochemical permeation experiments at room temperature and carrier gas hot extraction (CGHE) from 100 to 400 °C. Hydrogen diffusion coefficients were calculated, and the corresponding hydrogen concentration was measured. It was ascertained that both heat treatment conditions show significant differences. At room temperature the AW condition showed significant hydrogen trapping expressed by to seven times lower diffusion coefficients. A preferred diffusion direction was found in perpendicular direction expressed by high permeability. The CGHE experiments revealed lower diffusion coefficients for the AW condition up to 400 °C. In this context, a hydrogen concentration of approximately 21 ml/100 g was still trapped at 100 °C. For that reason, a certain HAC susceptibility of as-welded P91 weld metal cannot be excluded, and hydrogen removal should be done before PWHT. KW - Creep resisting materials KW - Diffusion KW - Hydrogen KW - Weld metal KW - Post weld heat treatment KW - Microstructure PY - 2020 DO - https://doi.org/10.1007/s40194-019-00828-8 SN - 0043-2288 VL - 64 IS - 2 SP - 267 EP - 281 PB - Springer AN - OPUS4-50471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Hänninen, H. A1 - Böllinghaus, Thomas T1 - In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load JF - Scientific Reports N2 - Hydrocarbons fuel our economy. Furthermore, intermediate goods and consumer products are often hydrocarbon-based. Beside all the progress they made possible, hydrogen-containing substances can have severe detrimental effects on materials exposed to them. Hydrogen-assisted failure of iron alloys has been recognised more than a century ago. The present study aims to providing further insight into the degradation of the austenitic stainless steel AISI 304L (EN 1.4307) exposed to hydrogen. To this end, samples were electrochemically charged with the hydrogen isotope deuterium (2H, D) and analysed by scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that deuterium caused a phase transformation from the original γ austenite into ε- and α’-martensite. Despite their low solubility for hydrogen, viz. deuterium, the newly formed phases showed high deuterium concentration which was attributed to the increased density of traps. Information about the behaviour of deuterium in the material subjected to external mechanical load was gathered. A four-point-bending device was developed for this purpose. This allowed to analyse in-situ pre-charged samples in the ToF-SIMS during the application of external mechanical load. The results indicate a movement of deuterium towards the regions of highest stress. KW - ToF-SIMS KW - Hydrogen KW - Deuterium KW - AISI 304L KW - EBSD PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505142 DO - https://doi.org/10.1038/s41598-020-60370-2 VL - 10 IS - 1 SP - 3611 PB - Nature AN - OPUS4-50514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lippold, J. C. A1 - Böllinghaus, Thomas A1 - Richardson, I. T1 - Welding in the world - Update 2018 JF - Welding in the world N2 - In 2018, the Journal "Welding in the World" published 6 issues that contained 120 papers and over 1300 pages of fundamental and applied research associated with materials joining and allied technologies. KW - Journal KW - Editorial Board KW - Year in Review PY - 2019 DO - https://doi.org/10.1007/s40194-018-00695-9 SN - 0043-2288 SN - 1878-6669 VL - 63 IS - 1 SP - 1 PB - Springer CY - Berlin AN - OPUS4-50064 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madigan, Maria A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Sommitsch, C. ED - Enzinger, N. ED - Mayr, P. T1 - Numerical Simulation of Hydrogen Assisted Stress Corrosion Cracking Originating from Pits T2 - Mathematical Modelling of Weld Phenomena 12 N2 - Supermartensitic stainless steels (SMSS) are a commonly used material nowadays for building offshore structures, i.e. pipelines in the oil and gas industry. The harsh and corrosive environments in oil and gas applications require the correct combination of alloys to attain the desired properties of steel, including high strength and good corrosion properties, even in severe sour service conditions. Welding is the most commonly used method in joining offshore components, depending on requirements requiring strength or fitting. It has been shown that the heat affected zone (HAZ) is more susceptible to certain types of corrosion, including pitting corrosion, especially during severe sour service where a high pH and lower H2S values in the flow medium can lead to pitting corrosion in the HAZ of welded structures. Subsequent hydrogen uptake in the pits can cause cracks to initiate and propagate, leading to rupture of pipelines or catastrophic failures of structures, even at low mechanical loads. Offshore standards allow a certain amount of corrosion, including pitting, to be present before action is required, however the extent of pitting corrosion is not identified by performing visual inspection alone as the subsurface pit diameter may be vastly greater than the pit diameter at the surface. The critical conditions which lead to crack initiation and propagation from a pit with hydrogen uptake are currently not known. Therefore, pitting corrosion and subsequent crack initiation are a danger to the safety of structures. The interest in this phenomenon has resulted in many experimental studies and numerical simulations. Several numerical models of pitting corrosion and hydrogen uptake resulting in crack initiation are already in existence, but these two phenomena are regularly modelled individually. Thus, a model enabling simulation of both phenomena simultaneously would be of great benefit. Hence, the goal of this study is to develop a model enabling simulation of pit growth and crack initiation, considering hydrogen uptake in the pit from a corrosive environment. As a first step, this paper presents an investigation into various parameters, which influence crack initiation at pits. These crack critical parameters include: pit geometry, pit location, mechanical load and hydrogen transport into the microstructure. The results will help to identify critical conditions for crack initiation starting at the pit and developing measures to avoid hydrogen assisted cracking (HAC). T2 - 12th International Seminar Numerical Analysis of Weldability CY - Graz, Austria DA - 23.09.2018 KW - Hydrogen Assisted Cracking (HAC) KW - Pitting KW - Supermartensitic Stainless Steel (SMSS) KW - Numerical Simulation PY - 2019 SN - 978-3-85125-615-4 SN - 978-3-85125-616-1 SN - 2410-0544 VL - 12 SP - 443 EP - 464 PB - Verlag der Technischen Universität Graz CY - Graz (Österreich) AN - OPUS4-48721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -