TY - CONF A1 - Böllinghaus, Thomas A1 - Mente, Tobias T1 - Schadensfälle geschweißter Rohrleitungen und Maßnahmen zur Vermeidung N2 - Aus wirtschaftlich-technischer Perspektive ergeben sich in den letzten zehn Jahren hinsichtlich der Werkstoffinnovation und -auswahl für geschweißte Rohrleitungen im Wesentlichen zwei Entwicklungsrichtungen: Im Bereich der niedriglegierten Stähle werden immer höher festere Feinkombaustähle mit Streckgrenzen von inzwischen über 900 MPa verwendet. Wirtschaftliches Ziel ist hierbei eine möglichst hohe Kosteneinsparung durch Reduktion der Wanddicke. Für korrosionsbeanspruchte Komponenten, unter anderem im Petrochemie- und Energieanlagenbau besteht das wirtschaftliche Ziel primär darin, eine höhere Kosteneinsparung durch neue Legierungskonzepte zu erzielen und zwar möglichst so, dass bei mindestens gleicher Festigkeit auf die Verwendung von teuren Elementen, wie beispielsweise Nickel, verzichtet werden kann. Beispiele hierfür sind insbesondere hochlegierte martensitische Cr-V-Stähle, supermartensitische Stähle, Lean-Duplexstähle, superaustenitische Stähle und austenitische Cr-Mn-Stähle. Für einige der neu eingeführten Grundwerkstoffe sind die Zusatzwerkstoffe noch in der Entwicklung. In jedem Fall stellen diese Werkstoffinnovationen besondere Ansprüche hinsichtlich einer Rissvermeidung während der schweißtechnischen Verarbeitung, um von vornherein riss- bzw. fehlerfreie Rohrleitungen herzustellen, die eine hohe Sicherheit gegen ein Versagen während der Inbetriebnahme und im Verlauf der vorgesehenen Lebensdauer aufweisen. Fast alle dieser neu eingeführten Rohrleitungswerkstoffe weisen eine reduzierte Heiß- oder Kaltrissresistenz vor allem während des Schweißens mit modernen Hochleistungsprozessen, bspw. Laserhybridschweißen, auf. Dabei besteht nach wie vor Forschungsbedarf hinsichtlich der jeweiligen Entstehungsmechanismen. Da es in den letzten zehn Jahren immer häufiger zu Produktionsausfällen und Schadensfällen mit teilweise katastrophalen Konsequenzen gekommen ist, werden die Ursachen und die Vermeidung fertigungsbedingter Heiß- und Kaltrisse im Folgenden zusammengefasst. T2 - 14. Sommerkurs Werkstoffe und Fügen CY - Magdeburg, Germany DA - 23.09.2011 PY - 2011 SN - 978-3-940961-56-3 SP - 45 EP - 54 CY - Magdeburg AN - OPUS4-26196 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böllinghaus, Thomas A1 - Mente, Tobias T1 - Vermeidung von Rissen beim Schweissen von Rohrleitungen N2 - Schadensfälle in den letzten zehn Jahren mit teilweise katastrophalen Folgen belegen, dass der Vermeidung von Rissen beim Schweißen von Rohrleitungen besondere Aufmerksamkeit zu schenken ist. In der Analyse solcher Schäden ist zu unterscheiden, ob die Risse bereits während oder kurz nach der schweißtechnischen Fertigung der Rohrkomponenten oder während des anschließenden Betriebes entstanden sind. Im vorliegenden Beitrag wird sich vor allem auf die Vermeidung einer Heiß- und Kaltrissbildung beim Schweißen von Rohrleitungen konzentriert und es werden weitere Forschungsperspektiven abgeleitet. T2 - DVM-Tag 2011 - Bauteilzuverlässigkeit - Schäden und ihre Vermeidung CY - Berlin, Germany DA - 04.05.2011 KW - Rissvermeidung KW - Heißrissbildung KW - Wasserstoffunterstützte Kaltrissbildung (HACC) KW - Pipelineschweißungen PY - 2011 SN - 0946-5987 N1 - Serientitel: DVM-Bericht – Series title: DVM-Bericht IS - 678 SP - 81 EP - 90 AN - OPUS4-26113 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Böllinghaus, Thomas A1 - Mente, Tobias A1 - Dabah, Eitan ED - Kulkarni, D.V. ED - Samant, M. ED - Krishnan, S. ED - De, A. ED - Krishnan, J. ED - Patel, H. ED - Bhaduri, A.K. T1 - Trends in investigating hydrogen cracking and diffusion in steel welds N2 - The present contribution highlights recent trends in investigating hydrogen diffusion and cracking in steel welds. For such studies, supermartensitic stainless steels (SMSS) have exemplarily been selected. These materials have been used for offshore and marine constructions for about two decades now. They present a versatility of improved properties such as high strength to thickness ratio, good weldability and good corrosion resistance. However, as shown by respective failure cases, SMSS welds might become prone to hydrogen assisted cracking and the degradation phenomena are more easily to investigate due to the nearly homogeneous martensitic microstructure than in other materials. Generally, it has to be distinguished between cracking that occurs during or shortly after fabrication welding, or during subsequent operation of SMSS components. In order to achieve crack avoidance during fabrication and service, conclusive test sequences have to be applied, ranging from field tests at real components and full scale tests investigating the materials behavior under real service conditions to basic and small scale tests, such as tensile and corrosion tests, oriented more towards a materials ranking. Considerable testing of SMSS welds has been carried out and the present paper particularly summarizes spotlights on 1:1 scale component testing of welded tubulars, slow strain rate testing and basic tests oriented to elucidate the hydrogen behavior and degradation in SMSS weld microstructures. Also, permeation tests, hydrogen dependent degradation of mechanical properties and thermal desorption spectroscopy are adressed. As a specific item, first results of lately conducted investigations for tracking hydrogen movement in such weld microstructures by using high energy synchrotron radiation are elucidated. T2 - IIW International conference on global trends in joining, cutting and surfacing technology CY - Chennai, India DA - 21.07.2011 PY - 2011 SN - 978-81-8487-152-4 SP - 49 EP - 55 PB - Narosa Publ. House AN - OPUS4-26114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Böllinghaus, Thomas A1 - Mente, Tobias A1 - Wongpanya, Pornwasa A1 - Viyanit, Ekkarut A1 - Steppan, Enrico ED - Böllinghaus, Thomas ED - Lippold, J. C. ED - Cross, C. E. T1 - Numerical modelling of hydrogen assisted cracking in steel welds N2 - Hydrogen assisted stress corrosion and cold cracking represent still a major topic regarding the safety of welded steel components against failure in many industrial branches. Hydrogen might be introduced during fabrication welding or might be taken up from an environment during sour service or at cathodic protection. Additionally, understanding and avoidance of hydrogen entry into weld microstructures from gaseous pressurized environments becomes increasingly important for renewable energy components. There are two types of metallurgical mechanisms associated with hydrogen assisted cracking, i.e. the cracking as well as hydrogen transport and trapping mechanisms. For numerical modelling, it has to be considered that both types are not independent of each other, that the mechanisms are not yet completely clarified and that validation of such models strongly depends on implementation of the correct hydrogen related materials properties. However, quite significant achievements have been made in modelling of hydrogen assisted cracking by indirect coupling of thermal, stress-strain as well as hydrogen uptake and diffusion analyses. After a brief introduction into the subject and by revisiting various proposed cracking mechanisms, the present contribution focuses on recent developments of a numerical model based on a comparison of actual hydrogen concentrations and mechanical loads with respective hydrogen dependent material properties as crack initiation and propagation criteria. The basic procedure for numerical simulation of crack initiation and propagation is outlined and it is shown how such numerical simulations can be validated experimentally. Furthermore, it is highlighted how such a procedure has been extended to a comprehensive model for life time prediction of welded steel pipeline components and experimentally verified. Finally, it is outlined how the model can be extended to simulate cracking in heterogeneous steel microstructures on the different scales. KW - hydrogen assisted cracking KW - numerical simulation KW - supermartensitic stainless steel KW - high strength low alloyed structural steel KW - duplex stainless steel PY - 2016 UR - http://link.springer.com/chapter/10.1007%2F978-3-319-28434-7_18 UR - http://www.springer.com/us/book/9783319284323 SN - 978-3-319-28432-3 SN - 978-3-319-28434-7 U6 - https://doi.org/10.1007/978-3-319-28434-7_18 SP - Part VI, 383 EP - 439 PB - Springer International Publishing CY - Switzerland ET - 1 AN - OPUS4-35593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Böllinghaus, Thomas A1 - Steppan, Enrico A1 - Mente, Tobias ED - Böllinghaus, Thomas ED - Lippold, J. C. ED - Cross, C. E. T1 - Hydrogen assisted cracking of a subsea-flowline N2 - Since the mid-nineties, supermartensitic stainless steels (SMSS) have increasingly been applied to welded subsea-pipeline systems in the North Sea oil and gas fields, especially to flowlines at mild sour service conditions. However, in 2001 cracking and leaks occurred during installation and service start-up of two SMSS flowlines in the Norwegian Tune gas condensate field, welded with a new developed matching filler wire. Brittle transgranular cracking started especially at inter-run lack of fusion and propagated brittle, predominantly through the weld metal. The present paper provides a brief overview of the original failure case and respective sequence of events leading to complete replacement of the SMSS by carbon steel flowlines in 2002. Then, detailed investigations of a circumferential weld sample of the failed Tune flowline are highlighted, targeted at comparison of the failure appearance to previous investigations of this filler material type and to search for possible explanations for the brittle fracture at the crack initiation area. SEM investigations of the fracture surface revealed brittle areas only in the direction towards the top side of the weld while the major part of the investigated surface exhibited ductile fracture. As an approach to clarify, if the fracture was a consequence of hydrogen assisted cracking, five small sized specimens have been cut out of the original sample. Cracking has been introduced parallel to the original fracture surface in these specimens at respective saw cuts and bending. The results show that brittle transgranular cracking appeared only in the specimen cooled down to very low temperatures by liquid nitrogen and in the sample charged with hydrogen to an average concentration of about 15 ml/100 g. However, a fracture similar to the original surface was observed only in the hydrogenized specimen. As a further result, very similar fracture surfaces of supermartensitic stainless steel weld metals had been observed on specimens subjected to hydrogen assisted cold cracking (HACC) as well as to hydrogen assisted stress corrosion cracking (HASCC). In total, the results indicate that brittle fracture starting at the inter-run lack of fusion were not initiated by high notch tip deformation rates, but rather influenced by hydrogen, probably taken up during welding. KW - supermartensitic stainless steel KW - hydrogen assisted cracking KW - fracture topography PY - 2016 UR - http://link.springer.com/chapter/10.1007/978-3-319-28434-7_17 UR - http://www.springer.com/us/book/9783319284323 SN - 978-3-319-28432-3 SN - 978-3-319-28434-7 U6 - https://doi.org/10.1007/978-3-319-28434-7_17 SP - Part V, 361 EP - 379 PB - Springer International Publishing CY - Switzerland ET - 1 AN - OPUS4-35592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madigan, Maria A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Sommitsch, C. ED - Enzinger, N. ED - Mayr, P. T1 - Numerical Simulation of Hydrogen Assisted Stress Corrosion Cracking Originating from Pits N2 - Supermartensitic stainless steels (SMSS) are a commonly used material nowadays for building offshore structures, i.e. pipelines in the oil and gas industry. The harsh and corrosive environments in oil and gas applications require the correct combination of alloys to attain the desired properties of steel, including high strength and good corrosion properties, even in severe sour service conditions. Welding is the most commonly used method in joining offshore components, depending on requirements requiring strength or fitting. It has been shown that the heat affected zone (HAZ) is more susceptible to certain types of corrosion, including pitting corrosion, especially during severe sour service where a high pH and lower H2S values in the flow medium can lead to pitting corrosion in the HAZ of welded structures. Subsequent hydrogen uptake in the pits can cause cracks to initiate and propagate, leading to rupture of pipelines or catastrophic failures of structures, even at low mechanical loads. Offshore standards allow a certain amount of corrosion, including pitting, to be present before action is required, however the extent of pitting corrosion is not identified by performing visual inspection alone as the subsurface pit diameter may be vastly greater than the pit diameter at the surface. The critical conditions which lead to crack initiation and propagation from a pit with hydrogen uptake are currently not known. Therefore, pitting corrosion and subsequent crack initiation are a danger to the safety of structures. The interest in this phenomenon has resulted in many experimental studies and numerical simulations. Several numerical models of pitting corrosion and hydrogen uptake resulting in crack initiation are already in existence, but these two phenomena are regularly modelled individually. Thus, a model enabling simulation of both phenomena simultaneously would be of great benefit. Hence, the goal of this study is to develop a model enabling simulation of pit growth and crack initiation, considering hydrogen uptake in the pit from a corrosive environment. As a first step, this paper presents an investigation into various parameters, which influence crack initiation at pits. These crack critical parameters include: pit geometry, pit location, mechanical load and hydrogen transport into the microstructure. The results will help to identify critical conditions for crack initiation starting at the pit and developing measures to avoid hydrogen assisted cracking (HAC). T2 - 12th International Seminar Numerical Analysis of Weldability CY - Graz, Austria DA - 23.09.2018 KW - Hydrogen Assisted Cracking (HAC) KW - Pitting KW - Supermartensitic Stainless Steel (SMSS) KW - Numerical Simulation PY - 2019 SN - 978-3-85125-615-4 SN - 978-3-85125-616-1 SN - 2410-0544 VL - 12 SP - 443 EP - 464 PB - Verlag der Technischen Universität Graz CY - Graz (Österreich) AN - OPUS4-48721 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - kModeling of hydrogen distribution in a duplex stainless steel N2 - Quite a number of models for hydrogen distribution in steels and welds have been developed in the past 20 years. They reach from simple analytical models to more complex two and three dimensional finite element simulations. So far, these models have been used to simulate hydrogen distribution in homogeneous microstructure. This paper contributes to numerical simulation of hydrogen distribution in heterogeneous microstructure, e. g. in a duplex stainless steel microstructure consisting of two phase fractions. Under appropriate conditions, such as cathodic protection, it is possible that hydrogen is absorbed leading to material embrittlement and possibly initiating hydrogen assisted cracking. In order to avoid hydrogen assisted cracking in duplex stainless steels, it is of great interest to know more about the diffusion behavior of the ferrite and austenite phase. A numerical model has been developed that operates on the mesoscale and enables simulation of hydrogen transport in the various phases of a metallic material. As a first application of this model, hydrogen distribution in a duplex stainless steel 1.4462, consisting of approximately equal portions of ferrite and austenite, was simulated using the finite element program package ANSYS. The results reflect the dependency of hydrogen distribution on the microstructural alignment of the ferrite and austenite phase fractions. Crack-critical areas can thus be identified, provided the critical strain-hydrogen combination is known for the respective microstructural phase. KW - Finite element KW - Simulation KW - Duplex stainless steel KW - Hydrogen KW - Diffusion KW - Weld metal KW - Microstructure PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 11/12 SP - 66 EP - 78 PB - Springer CY - Oxford AN - OPUS4-27483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Heat treatment effects on the reduction of hydrogen in multi-layer high-strength weld joints KW - Cold cracking KW - Heat treatment KW - High strength steels KW - Hydrogen KW - Numerical simulation KW - Structural steels PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 7/8 SP - 26 EP - 36 PB - Springer CY - Oxford AN - OPUS4-26055 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mente, Tobias A1 - Böllinghaus, Thomas ED - Sommitsch, C. ED - Enzinger, N. T1 - Numerical model for hydrogen assisted cracking in duplex stainless steel microstructures N2 - Duplex stainless steels (DSS) are used in various industrial applications, e.g. in offshore construction as well as in chemical industry. But, at specific conditions, as for instance arc welding fabrication, cathodic protection or exposure to sour service environments, such materials can take up hydrogen which may cause significant property degradation particularly in terms of ductility losses which, in turn, may entail hydrogen assisted cracking (HAC). If HAC occurs in a duplex stainless steel the cracking mechanism is different from steels having only one phase, because hydrogen diffusion, stress-strain distribution and crack propagation are totally different in the austenite or ferrite phase. Whereas, the mechanism of hydrogen assisted crack initiation and propagation as well as hydrogen trapping in DSS have not been fully understood up to the present, as in most two-phase microstructures. In order to better understand the mechanisms of hydrogen assisted cracking in duplex stainless steels, knowledge of the diffusion behavior and of the stress-strain distribution in the ferritic and austenitic phase is of great interest. A numerical mesoscale model was created with a view to studying the hydrogen transport and the stresses and strains in each phase of duplex stainless steel. The material investigated in this work was DSS 1.4462, consisting of approximately equal portions of ferrite and austenite. Hydrogen diffusion in the duplex base metal was studied using the finite element program ANSYS. Stress-strain distribution as well as hydrogen assisted cracking in the ferritic and austenitic phase fractions were additionally investigated. The results of numerical simulation of the hydrogen diffusion process as well as structural analyses enable the identification of crack critical areas in the DSS microstructure. Numerical simulations qualitatively reflect the crack initiation and propagation process in ferrite. Crack critical combinations of hydrogen concentrations and local mechanical loads initiating HAC can be identified. T2 - 10th International seminar numerical analysis of weldability CY - Leibnitz, Austria DA - 24.09.2012 KW - Schweißen KW - Mathematisches Modell KW - Numerische Mathematik PY - 2013 SN - 978-3-85125-293-4 VL - 10 SP - 337 EP - 356 PB - Verlag der Technischen Universität Graz AN - OPUS4-29987 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Mesoscale modeling of hydrogen-assisted cracking in duplex stainless steels N2 - Quite a number of numerical models for hydrogen-assisted cracking in different kind of steels are existing reaching from simple analytical models to more complex two- and three-dimensional finite element simulations. These numerical models have been used to simulate the processes of hydrogen-assisted cracking in homogeneous microstructure. This paper contributes to numerical simulation of hydrogen-assisted cracking in heterogeneous microstructure, e.g., in a duplex stainless steel microstructure consisting of two phase fractions. If hydrogen is absorbed during welding or during service, i.e., due to cathodic protection, hydrogen is leading to material embrittlement and leads to hydrogen-assisted cracking. In order to improve understanding of the mechanisms of hydrogen-assisted cracking in duplex stainless steels, a numerical model has been created that operates at the mesoscale and enables simulation of stress–strain distribution as well as cracking in the various phases of a metallic material. Stress–strain distribution and hydrogen-assisted cracking in the duplex stainless steel 1.4462, consisting of approximately equal portions of ferrite and austenite, was simulated using the finite element program ANSYS. It was shown by numerical simulation that higher local stresses and strains are present at ferrite and austenite than the global stresses and strains in the duplex stainless steel, while the highest plastic deformations occur at austenite and the highest stresses can be found in small ferrite bars surrounded by ductile austenitic islands. By analyzing the stress–strain distribution in the duplex microstructure, crack critical areas in the ferrite can be identified. Hydrogen-assisted cracking was modeled assuming high hydrogen concentrations and regarding the local mechanical load in each phase of the duplex stainless steel. The mesoscale model qualitatively reflects the crack initiation and propagation process in the ferritic and austenitic phase of the duplex stainless steel. KW - Finite element analysis KW - Simulating KW - Duplex stainless steels KW - Stress distribution KW - Strain KW - Mathematical models KW - Hydrogen-assisted cracking KW - Hydrogen PY - 2014 U6 - https://doi.org/10.1007/s40194-013-0106-7 SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 2 SP - 205 EP - 216 PB - Springer CY - Oxford AN - OPUS4-29442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -