TY - JOUR A1 - Ben-Hamu, G. A1 - Eliezer, D. A1 - Cross, Carl Edward A1 - Böllinghaus, Thomas T1 - The relation between microstructure and corrosion behavior of GTA welded AZ31B magnesium sheet JF - Materials science and engineering A N2 - Welding of AZ31B magnesium alloy was carried out using gas-tungsten arc (GTA) welding. The microstructure and the corrosion behavior of welded magnesium AZ31B alloy were investigated. ac and dc polarization tests were carried out on the welded Mg sheet. The microstructure was examined using optical and electron microscopy (TEM and SEM), X-ray analysis and EDS. Scanning Kelvin probe force microscopy (SKPFM) was used in order to measure the Volta potential of different phases relative to the matrix. The results showed that the GTA process effected both the microstructure and the corrosion behavior. These results can be explained by the effects of the process on microstructure of AZ31B Mg alloy sheet such as grain size and precipitates caused by the change in precipitation and recrystallization behavior. KW - AZ31B KW - GTA weld KW - Microstructure KW - Corrosion behavior KW - SKPFM KW - Intermetallics PY - 2007 DO - https://doi.org/10.1016/j.msea.2006.12.122 SN - 0921-5093 SN - 1873-4936 VL - 452/453 SP - 210 EP - 218 PB - Elsevier CY - Amsterdam AN - OPUS4-15459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cross, Carl Edward A1 - Böllinghaus, Thomas T1 - The Effect of Restraint on weld Solidification Cracking in Aluminium JF - Welding in the world KW - Aluminium alloys KW - Light metals KW - Solidification cracking KW - Cracking KW - Defects KW - Hot cracking KW - Crack initiation KW - Strain KW - Restraint PY - 2006 SN - 0043-2288 SN - 1878-6669 VL - 50 IS - 11/12 SP - 51 EP - 54 PB - Springer CY - Oxford AN - OPUS4-14220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eliezer, Dan A1 - Tal-Gutelmacher, E. A1 - Cross, Carl Edward A1 - Böllinghaus, Thomas T1 - Hydrogen trapping in beta-21S titanium alloy JF - Materials science and engineering A N2 - Different characteristics of hydrogen's absorption/desorption behavior and trapping in ß-21S titanium alloy are studied by means of thermal desorption spectroscopy (TDS). Spectra analysis is supported by data from variety of other experimental techniques, such as LECO hydrogen determinator, XRD and microstructure investigations by means of optic and electronic microscopy. In contrast to many past considerations, the complex process of hydrogen evolution has been found to be significantly affected by the way hydrogen introduction into the alloy. The different trapping sites, as well as phase transformations, have to be considered as the reasons for the different hydrogen evolution behavior. KW - Titanium alloys KW - Hydrogen absorption KW - Hydrogen desorption KW - Thermally activated processes KW - Thermal desorption spectroscopy (TDS) PY - 2006 DO - https://doi.org/10.1016/j.msea.2006.01.067 SN - 0921-5093 SN - 1873-4936 VL - 421 IS - 1-2 SP - 200 EP - 207 PB - Elsevier CY - Amsterdam AN - OPUS4-14423 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eliezer, Dan A1 - Tal-Gutelmacher, E. A1 - Cross, Carl Edward A1 - Böllinghaus, Thomas T1 - Hydrogen absorption and desorption in a duplex-annealed Ti-6Al-4V alloy during exposure to different hydrogen-containing environments JF - Materials science and engineering A N2 - Based on its excellent combination of a high strength/weight ratio and good corrosion behavior, Ti–6Al–4V alloy is ranked among the most important advanced materials for a variety of industrial applications. However, in many of these technological applications, this alloy is exposed to environments which can act as sources of hydrogen, and severe problems may arise based on its susceptibility to hydrogen embrittlement. Even small hydrogen concentrations might lead to failure. Consequently, a comprehensive knowledge of hydrogen's absorption/desorption behavior and interactions between hydrogen and different microstructural features is necessary to better understand the desorption and trapping mechanisms, the types of the trap sites, and the trapped hydrogen content, in order to determine the safe service conditions of this alloy in the industry. In this paper, different characteristics of hydrogen's absorption/desorption behavior and trapping in a duplex-annealed Ti–6Al–4V alloy are studied by means of thermal desorption spectroscopy (TDS). Spectra analysis is supported by data from a variety of other experimental techniques, such as LECO hydrogen determinator, XRD and microstructure investigations by means of optical and electron microscopy. Hydrogen evolution is found to be a very complex process, being affected by the way hydrogen was initially introduced to the alloy, the phase transformations that may occur during the thermal analysis and the presence of potential trapping sites. KW - Titanium alloys KW - Hydrogen absorption KW - Hydrogen desorption KW - Ti-6Al-4V KW - Thermal desorption spectroscopy (TDS) PY - 2006 DO - https://doi.org/10.1016/j.msea.2006.06.088 SN - 0921-5093 SN - 1873-4936 VL - 433 IS - 1-2 SP - 298 EP - 304 PB - Elsevier CY - Amsterdam AN - OPUS4-14484 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -