TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Simulation of an inductive weld pool support for deep penetration laser beam welding of metal parts JF - Journal of iron and steel research international N2 - three-dimensional laminar steady state numerical model was used to investigate the influence of an altemating current (ac) magnetic field during single pass high power laser beam keyhole welding of 20 mm thick aluminum. The three-dimensional heat transfer, fluid dynamics and electromagnetic field equations were solved with the commercial finite element package COMSOL Multiphysics. Dominant physical effects of the process were taken into account: Thermo-capillary (Marangoni) convection at the upper and lower weld pool surfaces, natural convection due to the gravity influence and the latent heat of solid-liquid phase transition. Simulations were conducted for several magnetic field strengths and it was found that the gravity drop-out associated with welding of thick plates due to the hydrostatie pressure can be prevented by the application of an ac magnetic field below the weld specimen of around 70 mT (rms) at an oscillation frequency of 450 Hz. The inductive support System allows for single-pass laser beam welding of thick aluminum plates. The flow pattem in the molten zone and the temperature distributions are significantly changed by the application of the electromagnetic forces in the weld pool. KW - Electromagnetic weld pool support KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 114 EP - 117 PB - Ed. Board CY - Beijing AN - OPUS4-26913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Fluid flow simulation of the influence of a steady magnetic field on the weld pool dynamics in deep penetration laser beam welding of aluminium JF - Journal of iron and steel research international N2 - A multi-physics numerical model was developed to investigate the influence of a steady magnetic field during partial penetration keyhole laser beam welding of an aluminum plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved with the finite element differential equation solver COMSOL Multiphysics. The magnetic field was aligned perpendicularly to the welding direction. The main objective of these simulations was to estimate the critical value of the magnetic field needed to suppress convective flows in the weld pool during high-power (up to 20 kW) laser beam welding of aluminum alloys with up to 20 mm deep weld pool. It reveals that steady magnetic fields with corresponding Hartmann numbers Ha^2 ~ 10^4 based on the half-width of the weld pool can effectively suppress convective flows in the weld pool. Moreover, the typically occurring wineglass-shape of the weld cross section caused by thermo-capillary flow is weakened. KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection KW - Hartmann effect PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 467 EP - 470 PB - Ed. Board CY - Beijing AN - OPUS4-26914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Multi-physics process simulation of static magnetic fields in high power laser beam welding of aluminium T2 - COMSOL Conference 2012 (Proceedings) N2 - A three-dimensional turbulent steady state numerical model was used to investigate the influence of a stationary magnetic field during partial penetration high power laser beam keyhole welding of thick aluminum parts. COMSOL Multiphysics was used to calculate the three-dimensional heat transfer, fluid dynamics and electromagnetic field equations. Thermo-capillary (Marangoni) convection at the upper weld pool surface, natural convection due to gravity and latent heat of solid-liquid phase transition were taken into account. It shows that the application of steady magnetic fields produces a braking Lorentz force in the melt based on the Hartmann effect. The flow pattern in the weld pool and also the temperature distribution and associated weld pool geometry thus change significantly. Convective flows in the melt can effectively be suppressed and the influence of thermo-capillary flow is diminished to a thin surface layer. T2 - COMSOL Conference 2012 CY - Milan, Italy DA - 10.10.2012 KW - Electromagnetic weld pool control KW - Laser beam welding KW - Lorentz force KW - Marangoni convection KW - Buoyancy PY - 2012 SN - 978-0-9839688-7-0 SP - 1 EP - 7 AN - OPUS4-26993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avilov, Vjaceslav A1 - Schneider, André A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Electromagnetic control of the weld pool dynamics in partial penetration laser beam welding of aluminium alloys T2 - ICALEO 2012 - 31st International congress on applications of lasers & electro-optics (Proceedings) N2 - An oscillating (AC) magnet field was used to suppress porosity formation and to stabilize the surface of the weld pool in bead-on-plate partial penetration 4.4 kW Nd:YAG laser beam welding of AW-5754 plates in PA position. The magnet was mounted on the laser welding head. The magnet field (up to 0.4 T and 10 kHz) was oriented perpendicular the welding direction. The analysis of the weld cross-sections and x-ray images shows a drastic reduction (up to 90%) of porosity contents in the welds. The observed effects can be explained in terms of electromagnetically (EM) induced 'Archimedes' forces as well as the EM stirring flow in the weld pool. Moreover, usage of AC magnetic fields results in a significant reduction (up to 50%) of the surface roughness of the welds. This effect can be explained in terms of electromagnetic (EM) contribution to the surface tension (the Garnier-Moreau effect) T2 - ICALEO 2012 - 31st International congress on applications of lasers & electro-optics CY - Anaheim, CA, USA DA - 23.09.2012 PY - 2012 IS - Paper 701 SP - 250 EP - 256 AN - OPUS4-27257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical investigation of an electromagnetic weld pool support system for high power laser beam wleidng of austenitic stainless steel JF - Journal of materials processing technology N2 - A three-dimensional turbulent steady state numerical model was used to investigate the influence of an alternating current (AC) magnetic field during high power laser beam keyhole welding of 20 mm thick stainless steel AISI 304 being modeled as an ideal non-ferromagnetic material. Three-dimensional heat transfer and fluid dynamics as well as the electromagnetic field equations were solved with the finite element package COMSOL Multiphysics 4.2 taking into account the most important physical effects of the process. Namely, the thermo-capillary (Marangoni) convection at the weld pool boundaries, natural convection due to gravity and density differences in the melt volume as well as latent heat of solid–liquid phase transitions at the phase boundaries were included in the model. It is shown that the gravity drop-out associated with the welding of thick plates due to the hydrostatic pressure can be prevented by the application of AC magnetic field between 80 mT and 135 mT for corresponding oscillation frequencies between 1 kHz and 10 kHz below the weld specimen. Experimentally, a value of the magnetic flux density of around 230 mT was found to be necessary to allow for single-pass laser beam welding without sagging or drop-out of melt for a 20 mm thick combination of austenitic stainless steel AISI 304 and ferritic construction steel S235JRC at an oscillation frequency of around 2.6 kHz. KW - Electromagnetic weld pool control KW - Laser beam welding KW - Lorentz force KW - Marangoni flow KW - Natural convection PY - 2014 DO - https://doi.org/10.1016/j.jmatprotec.2013.11.013 SN - 0924-0136 SN - 1873-4774 VL - 214 IS - 3 SP - 578 EP - 591 PB - Elsevier CY - Amsterdam AN - OPUS4-29709 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Sommitsch, C. ED - Enzinger, N. T1 - Multi-physical finite element simulation of an electromagnetic weld pool support in full-penetration high power laser beam welding of metal plates T2 - Mathematical modelling of weld phenomena 10 T2 - 10th International seminar numerical analysis of weldability CY - Leibnitz, Austria DA - 2012-09-24 KW - Laser beam welding KW - Electromagnetic weld pool support KW - Marangoni convection PY - 2013 SN - 978-3-85125-293-4 VL - 10 SP - 5 EP - 20 PB - Verlag der Technischen Universität Graz AN - OPUS4-29982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - High power laser beam welding of austenitic stainless steel with electromagnetic weld pool support T2 - LTWMP '13 - 6th International conference "Laser technologies in welding and materials processing" (Proceedings) T2 - LTWMP '13 - 6th International conference "Laser technologies in welding and materials processing" CY - Katsively, Crimea, Ukraine DA - 2013-05-27 PY - 2013 SN - 978-966-96309-2-6 SP - 11 EP - 14 AN - OPUS4-29986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical simulation of electromagnetic melt control systems in high power laser beam welding T2 - ICALEO 2013 - 32nd International congress on applications of lasers & electro-optics (Proceedings) N2 - The availability of laser sources with a power of 20 kW upwards prepared the ground for laser beam welding of up to 20 mm thick metal parts. Challenges are the prevention of gravity-driven melt drop-out and the control of the dynamics mainly due to the Marangoni flow. Coupled numerical turbulent fluid flow, thermal and electromagnetic simulations and experimental validation with aluminum AlMg3 and stainless steel AISI 304 were done for alternating and steady magnetic fields perpendicular to the process direction. The first can prevent melt sagging in full-penetration welding by Lorentz forces in the melt induced by an AC magnet located below the weld specimen counteracting gravitational forces. The latter controls the Marangoni flow by Lorentz braking forces in the melt by the so-called Hartmann effect. The simulations show that the drop-out of aluminum and stainless steel can be avoided for 20 mm thick fullpenetration welds with moderate magnetic flux densities of 70 mT and 95 mT at oscillation frequencies of 450 Hz and 3 kHz, respectively. The experiments are in good agreement but show somewhat larger values for steel, whose weakly ferromagnetic properties are a possible reason. The investigations with steady magnetic fields reveal the possibility to mitigate the dynamics significantly beginning with around 500 mT at laser penetration depths of approximately 20 mm. T2 - ICALEO 2013 - 32nd International congress on applications of lasers & electro-optics CY - Miami, FL, USA DA - 2013-10-06 KW - Laser beam welding KW - Electromagnetic weld pool support KW - Hartmann effect PY - 2013 SN - 978-0-912035-98-7 IS - Paper 401 SP - 50 EP - 59 AN - OPUS4-29466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Magnets improve quality of high-power laser beam welding JF - Welding design & fabrication KW - Laser beam welding KW - Hartmann effect KW - Marangoni flow PY - 2013 UR - http://weldingdesign.com/processes/magnets-improve-quality-high-power-laser-beam-welding SN - 0043-2253 SP - 1 EP - 3(?) PB - Penton/IPC CY - Cleveland, Ohio AN - OPUS4-29412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Magnets improve quality of high-power laser beam welding JF - Comsol news N2 - Welding is one of the most critical operations for the construction of reliable metal structures in everything from ships to reactor vessels. When welds fail, often the entire structure fails, and expectations on weld quality have never been higher. Any process that uses a localized heat source, such as welding, is likely to result in some distortion. The welding process of very thick metal components is not inherently stable and is barely controllable without external forces. KW - Electromagnetic weld pool control KW - Laser beam weliding KW - Marangoni effect PY - 2014 VL - 2013-2014 SP - 30 EP - 32 AN - OPUS4-30338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Graf, J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Anwendung von AC-Magnetfeldern zur Verbesserung der Nahtqualität laserstrahlgeschweißter Aluminiumverbindungen JF - Schweißen und Schneiden : Fachzeitschrift für Schweißen und verwandte Verfahren N2 - Im Rahmen eines AiF-Forschungsvorhabens wurde die Beeinflussung des Schweißprozesses mittels generierter Wechselstrom-Magnetfelder (ACMagnetfelder) beim Laserstrahlschweißen von Aluminiumlegierungen untersucht. Das vorrangige Augenmerk galt hierbei der Entfernung von Poren sowie der Stabilisierung der Schweißnahtoberfläche zur Vermeidung von rauen Schweißnähten. Das Schweißen mit Einsatz des AC-Magneten erzeugte im Vergleich zu den Referenznähten deutlich flachere Schweißnähte mit reduzierter Porenanzahl, die typische Schuppenstruktur wurde unterdrückt. Das Magnetfeld bewirkte bei entsprechenden Parametern der magnetischen Flussdichte und der Frequenz eine Halbierung der Rauigkeit der Schweißnahtoberfläche. Neben der Oberflächenberuhigung wurde auch die Verteilung von Poren in der Schmelze beeinflusst. Es konnte nachgewiesen werden, dass bei einer geeigneten Auswahl der Parameter von AC-Magnetfeldern die Porositätsanteile in der Schweißnaht auf ein Zehntel gegenüber den Referenzschweißnähten reduziert werden können.----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Within the framework of an AiF research project, investigations were conducted into the influences exerted on the welding process using generated alternating current (AC) magnetic fields during the laser beam welding of aluminium alloys. In this respect, attention was principally paid to removing pores and to stabilising the weld surface in order to avoid rough welds. In comparison with the reference welds, welding utilising the AC magnet produced considerably flatter welds with a reduced number of pores and the typical ripple structure was suppressed. With corresponding parameters for the magnetic flux density and the frequency, the roughness of the weld surface was halved using the magnetic field. In addition to the surface stabilisation, influences were also exerted on the distribution of pores in the molten metal. It was possible to prove that, by selecting suitable parameters for AC magnetic fields, the porosity proportions in the weld can be reduced to one tenth of those in the reference welds. KW - Aluminium KW - Laserstrahlschweißen KW - Magnetfelder KW - Poren KW - Schweißnahtimperfektionen KW - Werkstofffragen PY - 2014 SN - 0036-7184 VL - 66 IS - 9 SP - 524 EP - 529 PB - Verl. für Schweißen u. Verwandte Verfahren, DVS-Verl. CY - Düsseldorf AN - OPUS4-31441 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical investigation of an electromagnetic weld pool control for laser beam welding JF - Physics procedia N2 - The objective of this study was to investigate the influence of externally applied magnetic fields on the weld quality in laser beam welding. The optimization of the process parameters was performed using the results of computer simulations. Welding tests were performed with up to 20 kW laser beam power. It was shown that the AC magnet with 3 kW power supply allows for a prevention of the gravity drop-out for full penetration welding of 20 mm thick stainless steel plates. For partial penetration welding it was shown that an0.5 T DC magnetic field is enough for a suppression of convective flows in the weld pool. Partial penetration welding tests with 4 kW beam power showed that the application of AC magnetic fields can reduce weld porosity by a factor of 10 compared to the reference joints. The weld surface roughness was improved by 50%. KW - Laser beam welding KW - Electromagnetic weld pool support KW - Hartmann effect KW - Electromagnetic rectification PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-314405 DO - https://doi.org/10.1016/j.phpro.2014.08.006 SN - 1875-3892 VL - 56 SP - 515 EP - 524 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-31440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - CFD simulation of the liquid metal flow in high power laser welding of aluminium with electromagnetic weld pool support T2 - 2nd International conference on fluid mechanics and heat and mass transfer 2011 - FLUIDSHEAT '11 (Proceedings) T2 - 2nd International conference on fluid mechanics and heat and mass transfer 2011 CY - Corfu, Greece DA - 2011-07-14 KW - Electromagnetic weld pool support KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection PY - 2011 SN - 978-1-61804-020-6 SP - 179 EP - 184 PB - WSEAS Press AN - OPUS4-24171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Magnets improve quality of high-power laser beam welding JF - Industrial laser solutions for manufacturing N2 - Welding is one of the most critical operations for the construction of reliable metal structures in everything from ships to reactor vessels. When welds fail, the entire structure often fails—so expectations on weld quality have never been higher. Any process that uses a localized heat source, such as welding, is likely to result in some distortion. The welding process of very thick metal components is not inherently stable and is barely controllable without external forces. KW - Laser beam welding KW - Hartmann effect KW - Electromagnetic weld control KW - Finite element simulation PY - 2015 UR - http://digital.industrial-lasers.com/industriallasers/20150304#pg1 SN - 1523-4266 SN - 0888-935X VL - 30/2 IS - March/April SP - 10 EP - 12 PB - Pennwell CY - Tulsa, Okla., USA AN - OPUS4-33037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Fritzsche, André A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support JF - Journal of laser applications N2 - Full penetration high power bead-on-plate laser beam welding tests of up to 20 mm thick 2205 duplex steel plates were performed in PA position. A contactless inductive electromagnetic (EM) weld pool support system was used to prevent gravity drop-out of the melt. Welding experiments with 15 mm thick plates were carried out using IPG fiber laser YLR 20000 and Yb:YAG thin disk laser TruDisk 16002. The laser power needed to achieve a full penetration was found to be 10.9 and 8.56 kW for welding velocity of 1.0 and 0.5 m min−1, respectively. Reference welds without weld pool support demonstrate excessive root sag. The optimal value of the alternating current(AC) power needed to completely compensate the sagging on the root side was found to be ≈1.6 kW for both values of the welding velocity. The same EM weld pool support system was used in welding tests with 20 mm thick plates. The laser beam power (TRUMPF Yb:YAG thin disk laser TruDisk 16002) needed to reach a full penetration for 0.5 m min−1 was found to be 13.9 kW. Full penetration welding without EM weld pool support is not possible—the surface tension cannot stop the gravity drop-out of the melt. The AC power needed to completely compensate the gravity was found to be 2 kW. KW - Electromagnetic weld pool control KW - Duplex stainless steel KW - Laser beam welding KW - Full penetration welding PY - 2016 DO - https://doi.org/10.2351/1.4944103 SN - 1042-346X SN - 1938-1387 VL - 28 IS - 2 SP - 022420-1 EP - 022420-7 PB - American institute of physics CY - Woodbury, NY, USA AN - OPUS4-35668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Kunze, R. A1 - Avilov, Vjaceslav A1 - Rethmeier, Michael T1 - Finite element modeling of an alternating current electromagnetic weld pool support in full penetration laser beam welding of thick duplex stainless steel plates JF - AIP Journal of Laser Applications N2 - An electromagnetic weld pool support system for 20 mm thick duplex stainless steel AISI 2205 was investigated numerically and compared to experiments. In our former publications, it was shown how an alternating current (AC) magnetic field below the process zone directed perpendicular to the welding direction can induce vertically directed Lorentz forces. These can counteract the gravitational forces and allow for a suppression of material drop-out for austenitic stainless steels and aluminum alloys. In this investigation, we additionally adopted a steady-state complex magnetic permeability model for the consideration of the magnetic hysteresis behavior due to the ferritic characteristics of the material. The model was calibrated against the Jiles–Atherton model. The material model was also successfully tested against an experimental configuration before welding with a 30 mm diameter cylinder of austenitic stainless steel sur-rounded by duplex stainless steel. Thereby, the effects of the Curie temperature on the magnetic characteristics in the vicinity of the later welding zone were simulated. The welding process was modeled with a three-dimensional turbulent steady-state model including heat transfer and fluid dy-namics as well as the electromagnetic field equations. Main physical effects, the thermo-capillary (Marangoni) convection at the weld pool boundaries, the natural convection due to gravity as well as latent heat of solid–liquid phase transitions at the phase boundaries were accounted for in the model. The feedback of the electromagnetic forces on the weld pool was described in terms of the electromagnetic-induced pressure. The finite element software COMSOL Multiphysics 4.2 was used in this investigation. It is shown that the gravity drop-out associated with the welding of 20 mm thick duplex stainless steel plates due to the hydrostatic pressure can be prevented by the application of AC magnetic fields between around 70 and 90 mT. The corresponding oscillation frequencies were between 1 and 10 kHz and the electromagnetic AC powers were between 1 and 2.3 kW. In the experiments, values of the electromagnetic AC power between 1.6 and 2.4 kW at os-cillation frequencies between 1.2 and 2.5 kHz were found to be optimal to avoid melt sagging or drop-out of melt in single pass full-penetration laser beam welding of 15 and 20 mm thick AISI 2205. KW - Laser KW - Numerical simulation KW - Laser beam welding KW - Electromagnetic weld pool support KW - Duplex stainless steel PY - 2016 DO - https://doi.org/10.2351/1.4943906 VL - 28 IS - 2 SP - 022404-1 EP - 022404-9 PB - AIP Publishing AN - OPUS4-35676 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields JF - International journal of thermal sciences N2 - Controlling the dynamics in the weld pool is a highly demanding challenge in deep-penetration laser beam welding with modern high power laser systems in the multi kilowatt range. An approach to insert braking forces in the melt which is successfully used in large-scaled industrial applications like casting is the so-called Hartmann effect due to externally applied magnetic fields. Therefore, this study deals with its adaptation to a laser beam welding process of much smaller geometric and time scale. In this paper, the contactless mitigation of fluid dynamic processes in the melt by steady magnetic fields was investigated by numerical simulation for partial penetration welding of aluminium. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved based on temperature-dependent material properties up to evaporation temperature for two different penetration depths of the laser beam. The Marangoni convection in the surface region of the weld pool and the natural convection due to the gravitational forces were identified as main driving forces in the weld pool. Furthermore, the latent heat of solide-liquid phase transition was taken into account and the solidification was modelled by the Carman-Kozeny equation for porous medium morphology. The results show that a characteristic change of the flow pattern in the melt can be achieved by the applied steady magnetic fields depending on the ratio of magnetic induced and viscous drag. Consequently, the weld bead geometry was significantly influenced by the developing Lorentz forces. Welding experiments with a 16 kW disc laser with an applied magnetic flux density of around 500 mT support the numerical results by showing a dissipating effect on the weld pool dynamics. KW - Electromagnetic weld pool control KW - Hartmann effect KW - Laser beam weliding KW - Lorentz force KW - Marangoni flow KW - Natural convection KW - Aluminium PY - 2016 DO - https://doi.org/10.1016/j.ijthermalsci.2015.10.030 SN - 1290-0729 VL - 101 SP - 24 EP - 34 PB - Elsevier CY - Paris AN - OPUS4-35034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avilov, Vjaceslav A1 - Fritzsche, André A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support T2 - ICALEO 2015 - 34th International congress on applications of lasers & electro-optics (Proceedings) N2 - Full penetration high power bead-on-plate laser beam welding tests of up to 20 mm thick 2205 duplex steel plates were performed in PA position. A contactless inductive electromagnetic (EM) weld pool support system was used to prevent gravity drop-out of the melt. Welding experiments with 15 mm thick plates were carried out using IPG fiber laser YLR 20000 and Yb:YAG thin disk laser TruDisk 16002. The laser power needed to achieve a full penetration was found to be 10.9 and 8.56kW for welding velocity of 1.0 and 0.5 m min(-1), respectively. Reference welds without weld pool support demonstrate excessive root sag. The optimal value of the alternating current (AC) power needed to completely compensate the sagging on the root side was found to be approximate to 1.6 kW for both values of the welding velocity. The same EM weld pool support system was used in welding tests with 20 mm thick plates. The laser beam power (TRUMPF Yb:YAG thin disk laser TruDisk 16002) needed to reach a full penetration for 0.5 m min(-1) was found to be 13.9 kW. Full penetration welding without EM weld pool support is not possible-the surface tension cannot stop the gravity drop-out of the melt. The AC power needed to completely compensate the gravity was found to be 2 kW. (C) 2016 Laser Institute of America T2 - ICALEO 2015 - 34th International congress on applications of lasers & electro-optics CY - Atlanta, GA, USA DA - 2015-10-18 KW - Electromagnetic weld pool support KW - Laser beam welding KW - Duplex stainless steel PY - 2015 SN - 978-1-940168-05-0 SP - 571 EP - 579 PB - Amer inst physics CY - Melville, NY, USA AN - OPUS4-35035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Kunze, R. A1 - Avilov, Vjaceslav A1 - Rethmeier, Michael T1 - Finite element modelling of an AC electromagnetic weld pool support in full penetration laser beam welding of thick duplex stainless steel plates T2 - ICALEO 2015 - 34th International congress on applications of lasers & electro-optics (Proceedings) N2 - An electromagnetic weld pool support system for 20 mm thick duplex stainless steel AISI 2205 was investigated numerically and compared to experiments. In our former publications, it was shown how an AC magnetic field below the process zone directed perpendicular to the welding direction can induce vertically directed Lorentz forces. These can counteract the gravitational forces and allow for a suppression of material drop-out for austenitic stainless steels and aluminum alloys. In this investigation, we additionally adopted a steady-state complex magnetic permeability model for the consideration of the magnetic hysteresis behavior due to the ferritic characteristics of the material. The model was calibrated against the Jiles-Atherton model. The material model was also successfully tested against an experimental configuration before welding with a 30 mm diameter cylinder of austenitic stainless steel surrounded by duplex stainless steel. Thereby, the effects of the Curie temperature on the magnetic characteristics in the vicinity of the later welding zone were simulated. The welding process was modelled with a 3D turbulent steady-state model including heat transfer and fluid dynamics as well as the electromagnetic field equations. Main physical effects, the thermo-capillary (Marangoni) convection at the weld pool boundaries, the natural convection due to gravity as well as latent heat of solid–liquid phase transitions at the phase boundaries were accounted for in the model. The feedback of the electromagnetic forces on the weld pool was described in terms of the electromagneticinduced pressure. The FE software COMSOL Multiphysics 4.2 was used in this investigation. It is shown that the gravity drop-out associated with the welding of 20 mm thick duplex stainless steel plates due to the hydrostatic pressure can be prevented by the application of AC magnetic fields between around 70 mT and 90 mT. The corresponding oscillation frequencies were between 1 kHz and 10 kHz and the electromagnetic AC powers were between 1 kW and 2.3 kW. In the experiments, values of the electromagnetic AC power between 1.6 kW and 2.4 kW at oscillation frequencies between 1.2 kHz and 2.5 kHz were found to be optimal to avoid melt sagging or drop-out of melt in single pass fullpenetration laser beam welding of 15 mm and 20 mm thick AISI 2205. T2 - ICALEO 2015 - 34th International congress on applications of lasers & electro-optics CY - Atlanta, GA, USA DA - 2015-10-18 KW - Electromagnetic weld pool support KW - Laser beam welding KW - FE simulation KW - Duplex stainless steel PY - 2015 SN - 978-1-940168-05-0 SP - 650 EP - 659 AN - OPUS4-35036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - High-power laser welding of austenitic stainless steel with electromagnetic control of weld pool JF - The Paton welding journal N2 - Laser deep-penetration welding became a widely applied tool in industrial applications due to available laser power of 20 kW and more for the single-pass welding of steel plates of up to 20 mm thikness. Above a critical limit, liquid metal tends to drop out of the bead due to hydrostatic pressure. Laser welding, in contrast to electron beam welding technique, allows for an electromagnetic manipulation of fluid flow in the weld pool. AC electromagnetic system for compensation of the hydrostatic pressure by induced Lorentz forces in the melt was experimentally and numerically investigated for single-pass full-penetration welding of up to 20 mm thikness austenitic stainless steel plates of grade AISI 304. It was shown that the application of 200-234 mT magnetic fields at oscillation frequency of around 2.6 kHZ lead to a full compensation of hydrostatic forces in the melt for plate 10-20 mm thick, respectively. Coupled fluid flow, thermal and electromagnetic finite element simulations were done with different applied magnetic flux densities and oscillation frequencies calculating for the optimal magnetic field strength to avoid melt sagging in the weld pool. The simulation results point to a lower magnetic field density needed for that purpose. The reason for that can lie in the magnetic properties of the material not being totally non-ferromagnetic. 17 Ref., 1 Table, 5 Figures. KW - Laser welding KW - High power KW - Austenitic stainless steels KW - Drop out of bead KW - Control magnetic field KW - Hydrostatic force compensation KW - Modeling of fluid flow KW - Calculation PY - 2014 SN - 0957-798X VL - 3 SP - 21 EP - 24 PB - E. O. Paton Electric Welding Institute of the National Acad. of Sciences of Ukraine CY - Kyïv AN - OPUS4-30823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritzsche, André A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - High power laser beam welding of thick-walled ferromagnetic steels with electromagnetic weld pool support JF - Physics procedia N2 - The paper describes an experimental investigation of high power laser beam welding with an electromagnetic weld pool support for up to 20 mm thick plates made of duplex steel (AISI 2205) and mild steel (S235JR). The results of the welding tests show a successful application of this technology at ferromagnetic metals. Irregular sagging was suppressed successfully. An ac-power of less than 2 kW at oscillation frequencies between 800 Hz and 1.7 kHz is necessary for a full compasation of the hydrostatic pressure. Thus, it was demonstrated that the electromagnetic weld pool support is not only limited to non-ferromagnetic metals like austenitic steels. For future studies with duplex steel, the use of filler material has to take into account with regard to the balance of the mixed austenitic and ferritic phases. KW - Laser beam welding KW - Thick-walled steel KW - Ferromagnetic steel KW - Weld pool support PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-377593 DO - https://doi.org/10.1016/j.phpro.2016.08.038 SN - 1875-3892 VL - 83 SP - 362 EP - 372 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-37759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Avilov, Vjaceslav A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Laserstrahlschweißen dicker Stahlplatten mit elektromagnetischer Schmelzbadunterstützung T2 - 37. Assistentenseminar Füge- und Schweißtechnik N2 - Das bislang zur Vermeidung unzulässiger Wurzelüberhöhungen beim Laserstrahlschweißen von Aluminiumlegierungen bzw. austenitischem Stahl eingesetzte Verfahren der elektromagnetischen Schmelzbadstütze konnte innerhalb der vorliegenden Untersuchung erfolgreich zur Kompensation des hydrostatischen Druckes von ferromagnetischen Stählen übertragen werden. Es wurden dabei Laserstrahlschweißversuche in PA-Position an bis zu 20 mm dickem Duplexstahl 1.4462 sowie Baustahl S235JR durchgeführt. Unter konstanten Schweißparametern wurden Durchschweißungen generiert. Dem hydrostatischen Druck wurde unter Verwendung der Technologie zur elektromagnetischen Schmelzbadunterstützung durch Variation der Oszillationsfrequenz und der AC-Leistung des Magnetsystems entgegengewirkt. Zunächst konzentrierten sich die Versuche auf den Duplexstahl 1.4462, welcher jeweils aus 50 % Ferrit und Austenit besteht. Hierbei konnte festgestellt werden, dass zur idealen Kompensation von 15 mm bei einer Frequenz von 1,7 kHz eine AC-Leistung von 1,6 kW erforderlich ist, die Schweißnähte aber bereits bei einer AC-Leistung von ca. 0,8 kW in die Bewertungsgruppe B der DIN EN ISO 13919-1:1996-09 eingeordent werden können. Zur idealen Kompensation des hydrostatischen Druckes bei 20 mm dickem Duplexstahl war eine um 20 % höhere AC-Leistung notwendig. Im Anschluss an die Versuche mit dem Duplexstahl wurden die Untersuchungen auf bis zu 20 mm dicke Proben aus Baustahl S235JR erweitert. Für 15 mm konnten die Schweißnähte bei einer Frequenz von 1,7 kHz ab einer AC-Leistung von 1,3 kW in die Bewertungsgruppe B eingeordnet werden. Zur idealen Kompensation von 20 mm dickem Baustahl war eine AC-Leistung von 1,6 kW bei einer Frequenz von 636 Hz nötig. Mit steigender AC-Leistung konnte in allen Versuchsreihen eine sukzessive Verringerung der Wurzelüberhöhung demonstriert werden. T2 - Assistentenseminar 2016 der Wissenschaftlichen Gesellschaft Fügetechnik e.V. im DVS CY - Paewesin, Germany DA - 05.09.2016 KW - Elektromagnetische Schmelzbadunterstützung KW - Laserstrahlschweißen KW - Ferromagnetischer Stahl PY - 2018 SN - 978-3-96144-025-2 VL - 339 SP - 38 EP - 43 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-44302 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -