TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - CFD simulation of the liquid metal flow in high power laser welding of aluminium with electromagnetic weld pool support T2 - 2nd International conference on fluid mechanics and heat and mass transfer 2011 - FLUIDSHEAT '11 (Proceedings) T2 - 2nd International conference on fluid mechanics and heat and mass transfer 2011 CY - Corfu, Greece DA - 2011-07-14 KW - Electromagnetic weld pool support KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection PY - 2011 SN - 978-1-61804-020-6 SP - 179 EP - 184 PB - WSEAS Press AN - OPUS4-24171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avilov, Vjaceslav A1 - Schneider, André A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Electromagnetic control of the weld pool dynamics in partial penetration laser beam welding of aluminium alloys T2 - ICALEO 2012 - 31st International congress on applications of lasers & electro-optics (Proceedings) N2 - An oscillating (AC) magnet field was used to suppress porosity formation and to stabilize the surface of the weld pool in bead-on-plate partial penetration 4.4 kW Nd:YAG laser beam welding of AW-5754 plates in PA position. The magnet was mounted on the laser welding head. The magnet field (up to 0.4 T and 10 kHz) was oriented perpendicular the welding direction. The analysis of the weld cross-sections and x-ray images shows a drastic reduction (up to 90%) of porosity contents in the welds. The observed effects can be explained in terms of electromagnetically (EM) induced 'Archimedes' forces as well as the EM stirring flow in the weld pool. Moreover, usage of AC magnetic fields results in a significant reduction (up to 50%) of the surface roughness of the welds. This effect can be explained in terms of electromagnetic (EM) contribution to the surface tension (the Garnier-Moreau effect) T2 - ICALEO 2012 - 31st International congress on applications of lasers & electro-optics CY - Anaheim, CA, USA DA - 23.09.2012 PY - 2012 IS - Paper 701 SP - 250 EP - 256 AN - OPUS4-27257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Kunze, R. A1 - Avilov, Vjaceslav A1 - Rethmeier, Michael T1 - Finite element modelling of an AC electromagnetic weld pool support in full penetration laser beam welding of thick duplex stainless steel plates T2 - ICALEO 2015 - 34th International congress on applications of lasers & electro-optics (Proceedings) N2 - An electromagnetic weld pool support system for 20 mm thick duplex stainless steel AISI 2205 was investigated numerically and compared to experiments. In our former publications, it was shown how an AC magnetic field below the process zone directed perpendicular to the welding direction can induce vertically directed Lorentz forces. These can counteract the gravitational forces and allow for a suppression of material drop-out for austenitic stainless steels and aluminum alloys. In this investigation, we additionally adopted a steady-state complex magnetic permeability model for the consideration of the magnetic hysteresis behavior due to the ferritic characteristics of the material. The model was calibrated against the Jiles-Atherton model. The material model was also successfully tested against an experimental configuration before welding with a 30 mm diameter cylinder of austenitic stainless steel surrounded by duplex stainless steel. Thereby, the effects of the Curie temperature on the magnetic characteristics in the vicinity of the later welding zone were simulated. The welding process was modelled with a 3D turbulent steady-state model including heat transfer and fluid dynamics as well as the electromagnetic field equations. Main physical effects, the thermo-capillary (Marangoni) convection at the weld pool boundaries, the natural convection due to gravity as well as latent heat of solid–liquid phase transitions at the phase boundaries were accounted for in the model. The feedback of the electromagnetic forces on the weld pool was described in terms of the electromagneticinduced pressure. The FE software COMSOL Multiphysics 4.2 was used in this investigation. It is shown that the gravity drop-out associated with the welding of 20 mm thick duplex stainless steel plates due to the hydrostatic pressure can be prevented by the application of AC magnetic fields between around 70 mT and 90 mT. The corresponding oscillation frequencies were between 1 kHz and 10 kHz and the electromagnetic AC powers were between 1 kW and 2.3 kW. In the experiments, values of the electromagnetic AC power between 1.6 kW and 2.4 kW at oscillation frequencies between 1.2 kHz and 2.5 kHz were found to be optimal to avoid melt sagging or drop-out of melt in single pass fullpenetration laser beam welding of 15 mm and 20 mm thick AISI 2205. T2 - ICALEO 2015 - 34th International congress on applications of lasers & electro-optics CY - Atlanta, GA, USA DA - 2015-10-18 KW - Electromagnetic weld pool support KW - Laser beam welding KW - FE simulation KW - Duplex stainless steel PY - 2015 SN - 978-1-940168-05-0 SP - 650 EP - 659 AN - OPUS4-35036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avilov, Vjaceslav A1 - Fritzsche, André A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Full penetration laser beam welding of thick duplex steel plates with electromagnetic weld pool support T2 - ICALEO 2015 - 34th International congress on applications of lasers & electro-optics (Proceedings) N2 - Full penetration high power bead-on-plate laser beam welding tests of up to 20 mm thick 2205 duplex steel plates were performed in PA position. A contactless inductive electromagnetic (EM) weld pool support system was used to prevent gravity drop-out of the melt. Welding experiments with 15 mm thick plates were carried out using IPG fiber laser YLR 20000 and Yb:YAG thin disk laser TruDisk 16002. The laser power needed to achieve a full penetration was found to be 10.9 and 8.56kW for welding velocity of 1.0 and 0.5 m min(-1), respectively. Reference welds without weld pool support demonstrate excessive root sag. The optimal value of the alternating current (AC) power needed to completely compensate the sagging on the root side was found to be approximate to 1.6 kW for both values of the welding velocity. The same EM weld pool support system was used in welding tests with 20 mm thick plates. The laser beam power (TRUMPF Yb:YAG thin disk laser TruDisk 16002) needed to reach a full penetration for 0.5 m min(-1) was found to be 13.9 kW. Full penetration welding without EM weld pool support is not possible-the surface tension cannot stop the gravity drop-out of the melt. The AC power needed to completely compensate the gravity was found to be 2 kW. (C) 2016 Laser Institute of America T2 - ICALEO 2015 - 34th International congress on applications of lasers & electro-optics CY - Atlanta, GA, USA DA - 2015-10-18 KW - Electromagnetic weld pool support KW - Laser beam welding KW - Duplex stainless steel PY - 2015 SN - 978-1-940168-05-0 SP - 571 EP - 579 PB - Amer inst physics CY - Melville, NY, USA AN - OPUS4-35035 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - High power laser beam welding of austenitic stainless steel with electromagnetic weld pool support T2 - LTWMP '13 - 6th International conference "Laser technologies in welding and materials processing" (Proceedings) T2 - LTWMP '13 - 6th International conference "Laser technologies in welding and materials processing" CY - Katsively, Crimea, Ukraine DA - 2013-05-27 PY - 2013 SN - 978-966-96309-2-6 SP - 11 EP - 14 AN - OPUS4-29986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Avilov, Vjaceslav A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Laserstrahlschweißen dicker Stahlplatten mit elektromagnetischer Schmelzbadunterstützung T2 - 37. Assistentenseminar Füge- und Schweißtechnik N2 - Das bislang zur Vermeidung unzulässiger Wurzelüberhöhungen beim Laserstrahlschweißen von Aluminiumlegierungen bzw. austenitischem Stahl eingesetzte Verfahren der elektromagnetischen Schmelzbadstütze konnte innerhalb der vorliegenden Untersuchung erfolgreich zur Kompensation des hydrostatischen Druckes von ferromagnetischen Stählen übertragen werden. Es wurden dabei Laserstrahlschweißversuche in PA-Position an bis zu 20 mm dickem Duplexstahl 1.4462 sowie Baustahl S235JR durchgeführt. Unter konstanten Schweißparametern wurden Durchschweißungen generiert. Dem hydrostatischen Druck wurde unter Verwendung der Technologie zur elektromagnetischen Schmelzbadunterstützung durch Variation der Oszillationsfrequenz und der AC-Leistung des Magnetsystems entgegengewirkt. Zunächst konzentrierten sich die Versuche auf den Duplexstahl 1.4462, welcher jeweils aus 50 % Ferrit und Austenit besteht. Hierbei konnte festgestellt werden, dass zur idealen Kompensation von 15 mm bei einer Frequenz von 1,7 kHz eine AC-Leistung von 1,6 kW erforderlich ist, die Schweißnähte aber bereits bei einer AC-Leistung von ca. 0,8 kW in die Bewertungsgruppe B der DIN EN ISO 13919-1:1996-09 eingeordent werden können. Zur idealen Kompensation des hydrostatischen Druckes bei 20 mm dickem Duplexstahl war eine um 20 % höhere AC-Leistung notwendig. Im Anschluss an die Versuche mit dem Duplexstahl wurden die Untersuchungen auf bis zu 20 mm dicke Proben aus Baustahl S235JR erweitert. Für 15 mm konnten die Schweißnähte bei einer Frequenz von 1,7 kHz ab einer AC-Leistung von 1,3 kW in die Bewertungsgruppe B eingeordnet werden. Zur idealen Kompensation von 20 mm dickem Baustahl war eine AC-Leistung von 1,6 kW bei einer Frequenz von 636 Hz nötig. Mit steigender AC-Leistung konnte in allen Versuchsreihen eine sukzessive Verringerung der Wurzelüberhöhung demonstriert werden. T2 - Assistentenseminar 2016 der Wissenschaftlichen Gesellschaft Fügetechnik e.V. im DVS CY - Paewesin, Germany DA - 05.09.2016 KW - Elektromagnetische Schmelzbadunterstützung KW - Laserstrahlschweißen KW - Ferromagnetischer Stahl PY - 2018 SN - 978-3-96144-025-2 VL - 339 SP - 38 EP - 43 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-44302 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Sommitsch, C. ED - Enzinger, N. T1 - Multi-physical finite element simulation of an electromagnetic weld pool support in full-penetration high power laser beam welding of metal plates T2 - Mathematical modelling of weld phenomena 10 T2 - 10th International seminar numerical analysis of weldability CY - Leibnitz, Austria DA - 2012-09-24 KW - Laser beam welding KW - Electromagnetic weld pool support KW - Marangoni convection PY - 2013 SN - 978-3-85125-293-4 VL - 10 SP - 5 EP - 20 PB - Verlag der Technischen Universität Graz AN - OPUS4-29982 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Multi-physics process simulation of static magnetic fields in high power laser beam welding of aluminium T2 - COMSOL Conference 2012 (Proceedings) N2 - A three-dimensional turbulent steady state numerical model was used to investigate the influence of a stationary magnetic field during partial penetration high power laser beam keyhole welding of thick aluminum parts. COMSOL Multiphysics was used to calculate the three-dimensional heat transfer, fluid dynamics and electromagnetic field equations. Thermo-capillary (Marangoni) convection at the upper weld pool surface, natural convection due to gravity and latent heat of solid-liquid phase transition were taken into account. It shows that the application of steady magnetic fields produces a braking Lorentz force in the melt based on the Hartmann effect. The flow pattern in the weld pool and also the temperature distribution and associated weld pool geometry thus change significantly. Convective flows in the melt can effectively be suppressed and the influence of thermo-capillary flow is diminished to a thin surface layer. T2 - COMSOL Conference 2012 CY - Milan, Italy DA - 10.10.2012 KW - Electromagnetic weld pool control KW - Laser beam welding KW - Lorentz force KW - Marangoni convection KW - Buoyancy PY - 2012 SN - 978-0-9839688-7-0 SP - 1 EP - 7 AN - OPUS4-26993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Multiphysics process simulation of the electromagnetic-supported laser beam welding T2 - COMSOL Conference 2011 (Proceedings) N2 - A three-dimensional laminar steady state numerical model was used to investigate the influence of an alternating current (ac) magnetic field during high power laser beam keyhole welding of 20 mm thick nonferromagnetic aluminum. COMSOL Multiphysics was used to calculate the threedimensional heat transfer, fluid dynamics and electromagnetic field equations. Most important physical effects of the process were taken into account: Thermo-capillary (Marangoni) convection at the upper and lower weld pool boundaries, natural convection due to gravity and latent heat of solid-liquid phase transition. It is shown that the gravity drop-out associated with welding of thick plates due to the hydrostatic pressure can be prevented by the application of an ac magnetic field. The application of an oscillating magnetic field of 70 mT was investigated to allow for singlepass laser beam welding of thick aluminum plates. The flow pattern in the molten zone and the temperature distributions are significantly changed. T2 - COMSOL Conference 2011 CY - Ludwigsburg, Germany DA - 2011-10-26 KW - Electromagnetic weld pool support KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection PY - 2011 SN - 978-0-9839688-0-1 IS - 11122 / 8567_bachmann_paper SP - 1 EP - 7 CY - Stuttgart AN - OPUS4-24845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical simulation of electromagnetic melt control systems in high power laser beam welding T2 - ICALEO 2013 - 32nd International congress on applications of lasers & electro-optics (Proceedings) N2 - The availability of laser sources with a power of 20 kW upwards prepared the ground for laser beam welding of up to 20 mm thick metal parts. Challenges are the prevention of gravity-driven melt drop-out and the control of the dynamics mainly due to the Marangoni flow. Coupled numerical turbulent fluid flow, thermal and electromagnetic simulations and experimental validation with aluminum AlMg3 and stainless steel AISI 304 were done for alternating and steady magnetic fields perpendicular to the process direction. The first can prevent melt sagging in full-penetration welding by Lorentz forces in the melt induced by an AC magnet located below the weld specimen counteracting gravitational forces. The latter controls the Marangoni flow by Lorentz braking forces in the melt by the so-called Hartmann effect. The simulations show that the drop-out of aluminum and stainless steel can be avoided for 20 mm thick fullpenetration welds with moderate magnetic flux densities of 70 mT and 95 mT at oscillation frequencies of 450 Hz and 3 kHz, respectively. The experiments are in good agreement but show somewhat larger values for steel, whose weakly ferromagnetic properties are a possible reason. The investigations with steady magnetic fields reveal the possibility to mitigate the dynamics significantly beginning with around 500 mT at laser penetration depths of approximately 20 mm. T2 - ICALEO 2013 - 32nd International congress on applications of lasers & electro-optics CY - Miami, FL, USA DA - 2013-10-06 KW - Laser beam welding KW - Electromagnetic weld pool support KW - Hartmann effect PY - 2013 SN - 978-0-912035-98-7 IS - Paper 401 SP - 50 EP - 59 AN - OPUS4-29466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -