TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Magnets improve quality of high-power laser beam welding JF - Comsol news N2 - Welding is one of the most critical operations for the construction of reliable metal structures in everything from ships to reactor vessels. When welds fail, often the entire structure fails, and expectations on weld quality have never been higher. Any process that uses a localized heat source, such as welding, is likely to result in some distortion. The welding process of very thick metal components is not inherently stable and is barely controllable without external forces. KW - Electromagnetic weld pool control KW - Laser beam weliding KW - Marangoni effect PY - 2014 VL - 2013-2014 SP - 30 EP - 32 AN - OPUS4-30338 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical assessment and experimental verification of the influence of the Hartmann effect in laser beam welding processes by steady magnetic fields JF - International journal of thermal sciences N2 - Controlling the dynamics in the weld pool is a highly demanding challenge in deep-penetration laser beam welding with modern high power laser systems in the multi kilowatt range. An approach to insert braking forces in the melt which is successfully used in large-scaled industrial applications like casting is the so-called Hartmann effect due to externally applied magnetic fields. Therefore, this study deals with its adaptation to a laser beam welding process of much smaller geometric and time scale. In this paper, the contactless mitigation of fluid dynamic processes in the melt by steady magnetic fields was investigated by numerical simulation for partial penetration welding of aluminium. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved based on temperature-dependent material properties up to evaporation temperature for two different penetration depths of the laser beam. The Marangoni convection in the surface region of the weld pool and the natural convection due to the gravitational forces were identified as main driving forces in the weld pool. Furthermore, the latent heat of solide-liquid phase transition was taken into account and the solidification was modelled by the Carman-Kozeny equation for porous medium morphology. The results show that a characteristic change of the flow pattern in the melt can be achieved by the applied steady magnetic fields depending on the ratio of magnetic induced and viscous drag. Consequently, the weld bead geometry was significantly influenced by the developing Lorentz forces. Welding experiments with a 16 kW disc laser with an applied magnetic flux density of around 500 mT support the numerical results by showing a dissipating effect on the weld pool dynamics. KW - Electromagnetic weld pool control KW - Hartmann effect KW - Laser beam weliding KW - Lorentz force KW - Marangoni flow KW - Natural convection KW - Aluminium PY - 2016 DO - https://doi.org/10.1016/j.ijthermalsci.2015.10.030 SN - 1290-0729 VL - 101 SP - 24 EP - 34 PB - Elsevier CY - Paris AN - OPUS4-35034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -