TY - JOUR A1 - Schneider, André A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser beam welding of aluminium alloys under the influence of an electromagnetic field JF - Physics Procedia N2 - During laser beam welding of aluminum alloys an electromagnetic field may favour pore outgassing through the top oxide layer. High frequencies cause a small penetration depth and thus exert a stabilizing effect on the weld surface. The point at which the laser beam between the two magnetic poles hits the workpiece surface is crucial to the influence of the magnetic field on the weld surface roughness. Using analyzed parameters for different laser points of application cause a change in weld surface roughness could be observed. The weld surface roughness could be reduced by 50%. The outgassing effect in terms of a reduction of pores could be observed for all parameter sets investigated. T2 - Lasers in manufacturing conference 2013 CY - Munich, Germany DA - 13.05.2013 KW - Electromagnetically controlled laser beam welding KW - Surface roughness KW - Porosity prevention KW - Aluminium alloys PY - 2013 DO - https://doi.org/10.1016/j.phpro.2013.03.045 SN - 1875-3892 VL - 41 SP - 4 EP - 11 PB - Elsevier B.V. CY - Amsterdam [u.a.] AN - OPUS4-28147 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Magnets improve quality of high-power laser beam welding JF - Comsol news KW - Laser beam welding KW - Electromagnetic weld pool control KW - Marangoni effect PY - 2013 SP - 30 EP - 32 AN - OPUS4-28655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avilov, Vjaceslav A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Lammers, Marco A1 - Rethmeier, Michael T1 - Inductive Electromagnetic Weld Pool Support System for High-Power Laser Beam Welding of Thick Aluminium Plates T2 - 4th International Conference on Magneto-Science T2 - 4th International Conference on Magneto-Science CY - Shanghai, China DA - 2011-10-09 PY - 2011 AN - OPUS4-24490 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support JF - Journal of Physics D N2 - A three-dimensional laminar steady-state numerical model was developed to investigate the influence of an alternating current (ac) magnetic field during high-power full-penetration laser welding on the weld pool dynamics and weld cross section of a 20 mm thick aluminium plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved iteratively with the commercial finite element software COMSOL Multiphysics using temperature-dependent material properties up to evaporation temperature. Thermocapillary convection at the weld pool surfaces, natural convection and latent heat of solid–liquid phase transition were taken into account in this model. Solidification was modelled by the Carman–Kozeny equation for porous media morphology. The ac magnet was mounted on the root side of the weld specimen. The magnetic field was aligned perpendicular to the welding direction. The flow pattern in the melt and thus also the temperature distribution were significantly changed by the application of oscillating magnetic fields. It was shown that the application of an ac magnetic field to laser beam welding allows for a prevention of the gravity drop-out. The simulation results are in good qualitative agreement with the experimental observations. KW - Electromagnetic weld pool support KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection PY - 2012 DO - https://doi.org/10.1088/0022-3727/45/3/035201 SN - 0022-3727 SN - 1361-6463 VL - 45 IS - 3 SP - 035201-1 - EP - 035201-13 PB - IOP Publ. CY - Bristol AN - OPUS4-25286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Multiphysics process simulation of the electromagnetic-supported laser beam welding T2 - COMSOL Conference 2011 (Proceedings) N2 - A three-dimensional laminar steady state numerical model was used to investigate the influence of an alternating current (ac) magnetic field during high power laser beam keyhole welding of 20 mm thick nonferromagnetic aluminum. COMSOL Multiphysics was used to calculate the threedimensional heat transfer, fluid dynamics and electromagnetic field equations. Most important physical effects of the process were taken into account: Thermo-capillary (Marangoni) convection at the upper and lower weld pool boundaries, natural convection due to gravity and latent heat of solid-liquid phase transition. It is shown that the gravity drop-out associated with welding of thick plates due to the hydrostatic pressure can be prevented by the application of an ac magnetic field. The application of an oscillating magnetic field of 70 mT was investigated to allow for singlepass laser beam welding of thick aluminum plates. The flow pattern in the molten zone and the temperature distributions are significantly changed. T2 - COMSOL Conference 2011 CY - Ludwigsburg, Germany DA - 2011-10-26 KW - Electromagnetic weld pool support KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection PY - 2011 SN - 978-0-9839688-0-1 IS - 11122 / 8567_bachmann_paper SP - 1 EP - 7 CY - Stuttgart AN - OPUS4-24845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - About the influence of a steady magnetic field on weld pool dynamics in partial penetration high power laser beam welding of thick aluminium parts JF - International journal of heat and mass transfer N2 - A multi-physics numerical model was developed to investigate the influence of a steady magnetic field aligned perpendicular to the welding direction during partial penetration high power laser beam welding of aluminium in downhand position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were successfully solved with the finite element differential equation solver COMSOL Multiphysics 4.2. The implemented material model used temperature-dependent properties up to evaporation temperature. Marangoni convection in the surface region of the weld pool, natural convection due to the gravitational field and latent heat of solid–liquid phase transition were taken into account. Solidification was modelled by the Carman–Kozeny equation for porous media morphology. The flow pattern in the melt as well as the weld bead geometry were significantly changed by the induced Lorentz force distribution in the liquid metal. It reveals that the application of a steady magnetic field to laser beam welding with corresponding Hartmann numbers Ha2 ≈ 104 allows for a suppression of the characteristic wineglass-shape of the weld cross section caused by thermocapillary flow. The numerical results are in good agreement with experimental results obtained with welding of AlMg3 with a 16 kW disc laser. The steady magnetic field was delivered by permanent magnets mounted on both lateral sides of the weld specimen. The maximum magnetic flux density was around 500 mT. It shows, that the applied magnetic field has a predominant dissipating effect on the weld pool dynamics independently of its polarity. KW - Electromagnetic weld pool control KW - Hartmann effect KW - Laser beam welding KW - Lorentz force KW - Marangoni flow KW - Natural convection PY - 2013 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.015 SN - 0017-9310 VL - 60 SP - 309 EP - 321 PB - Elsevier CY - Amsterdam AN - OPUS4-27655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Lammers, Marco A1 - Rethmeier, Michael T1 - PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support JF - Science and technology of welding and joining N2 - Full penetration 15 kW Yb fibre laser butt welding of thick AlMg3 (AW 5754) plates was performed in PA position. A contactless inductive electromagnetic weld pool support system was used to prevent gravity dropout of the melt. The welding speed needed to achieve 20 mm penetration was ~0·5 m min-1. An ac power supply of ~244 W at 460 Hz was necessary to completely suppress gravity dropout of the melt and eliminate sagging of the weld pool root side surface. The oscillating magnetic field can suppress the Marangoni convection in the lower part of the weld pool. The system was also successfully used in the full penetration welding of 30 mm thick AlMg3 plates. KW - High power laser beam welding KW - Electromagnetic weld pool support KW - Full penetration PY - 2012 DO - https://doi.org/10.1179/1362171811Y.0000000085 SN - 1362-1718 SN - 1743-2936 VL - 17 IS - 2 SP - 128 EP - 133 PB - Maney CY - London AN - OPUS4-25888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avilov, Vjaceslav A1 - Schneider, André A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Electromagnetic Control of the Weld Pool Dynamics in Partial Penetration Laser Beam Welding of Aluminium Alloy T2 - 31th International Congress on Applications of Laser & Electro-Optics T2 - 31th International Congress on Applications of Laser & Electro-Optics CY - Anaheim, CA, USA DA - 2012-09-23 PY - 2012 AN - OPUS4-26784 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avilov, Vjaceslav A1 - Schneider, André A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Electromagnetic control of the Weld Pool Dynamics in Partial Penetration Laser Beam Welding of Aluminium Alloys T2 - Conference Electromagnetic Processing of Materials Beijing 2012 T2 - Conference Electromagnetic Processing of Materials Beijing 2012 CY - Beijing, China DA - 2012-10-22 PY - 2012 AN - OPUS4-26852 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Schneider, André A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Electromagnetic control of the weld pool dynamics in partial penetration laser beam welding of aluminium alloys JF - Journal of iron and steel research international N2 - The main characteristic feature of deep penetration laser beam welding is a large temperature difference between the plasma cavity (keyhole) in the centre of the weld pool and the melting/solidification front. Large temperature gradients in the weld pool result in a very intensive thermocapillary (Marangoni) convection. The weld pool surface width becomes very large and unstable. However, an externally applied oscillating magnetic field can stabilize the surface of the melt (the Garnier-Moreau effect, 1983). In the present work this technology was used to stabilize the surface of the weld pool in partial penetration 4.4 kW Nd:YAG laser beam welding of AW-5754 alloyin PA position. The AC magnet was mounted on the laser welding head. The oscillating magnet field was oriented perpendicular to the welding direction. It was found that the AC magnet field can drastically reduce the surface roughness of welds. The analysis of the x-ray images shows a rastic reduction of porosity content in the welds. This effect can be explained as a result of electromagnetic ectification of the melt. KW - Electromagnetically controlled laser beam welding KW - Weld pool stabilization KW - Porosity prevention PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 233 EP - 236 PB - Ed. Board CY - Beijing AN - OPUS4-26833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -