TY - CONF A1 - Köppe, Enrico A1 - Augustin, D. A1 - Liers, A. A1 - Schiller, J. T1 - Self-calibration-method for an inertial navigation system with three 3D sensors T2 - ISISS 2014 - 1st IEEE International Symposium on Inertial Sensors and Systems (Proceedings) N2 - Inertial Navigation Systems with three 3D sensors are used to localize moving persons. The accuracy of the localization depends on the quality of the sensor data of the multi-sensor system. In order to improve the accuracy, a self-calibration process based on the automatic 3D calibration was developed. Based on the calibration procedure of the accelerometer (ACC) and the magnetic field sensor (MAG), the additional integration of the gyroscope (GYRO) leads to a reduction of the indoor positioning error. This improves both the approximation for the accelerometer and the magnetic field sensor so that the standard deviation of a single sensor is minimized. A new calibration procedure of the gyroscope and the accuracy improvement of the localization of a moving person are presented. T2 - ISISS 2014 - 1st IEEE International Symposium on Inertial Sensors and Systems CY - Laguna Beach, CA, USA DA - 25.02.2014 KW - Global Positioning System KW - Accelerometers KW - Calibration KW - Gyroscopes KW - Inertial navigation KW - Magnetic field measurement KW - Magnetic sensors KW - Sensor fusion KW - 3D sensor KW - ACC KW - GYRO KW - MAG KW - Accelerometer KW - Automatic 3D calibration KW - Gyroscope KW - Indoor positioning error reduction KW - Inertial navigation system KW - Magnetic field sensor KW - Moving person localization KW - Multisensor system KW - Self-calibration-method PY - 2014 SN - 978-1-4799-0915-5 DO - https://doi.org/10.1109/ISISS.2014.6782522 SP - 93 EP - 96 AN - OPUS4-32428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Köppe, Enrico A1 - Augustin, D. A1 - Liers, A. A1 - Schiller, J. T1 - Enhancement of the automatic 3D calibration for a multi-sensor system T2 - IPIN 2013 - 4th International conference on indoor positioning and indoor navigation N2 - The calibration of the integrated sensors in a multisensor system has gained in interest over the last years. In this paper we introduce an enhanced calibration process, which is based on the preceding study described in. The enhancement consists of the integration of a gyroscope. So far only the accelerometer and the magnetic field sensor were taken into account for the calibration process. Due to this improvement we reach a better approximation of the accelerometer and the magnetic field sensor. Additionally, we minimize the standard deviation of the single sensors and improve the accuracy of the positioning of a moving person. T2 - IPIN 2013 - 4th International conference on indoor positioning and indoor navigation CY - Belfort-Montbéliard, France DA - 28.10.2013 KW - Sensor calibration and validation KW - Person tracking KW - Inertial navigation system KW - Inertial measurement unit KW - Embedded systems KW - Multi-sensor system PY - 2013 UR - http://ipin2013.sciencesconf.org/conference/ipin2013/eda_en.pdf SN - 978-1-4799-4043-1 SP - 11 EP - 13 AN - OPUS4-32645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -