TY - GEN A1 - Stephan, Ina A1 - Askew, P. ED - Otto, H.-D. T1 - Mikrobiologische Prüfungen an Beschichtungsstoffen und Beschichtungen KW - Oberflächen KW - Beschichtung KW - Beschichtungsstoffe KW - Pilze KW - Algen KW - Bakterien KW - Mikrobiologie KW - Topfkonservierung KW - Filmkonservierung PY - 2006 SN - 3-7776-1121-2 VL - 10 IS - Abschnitt 10.2.6.6 SP - 494 EP - 507 PB - Hirzel CY - Stuttgart ET - 2., völlig neu bearb. und erw. AN - OPUS4-14395 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cunliffe, A. J. A1 - Askew, P. D. A1 - Stephan, Ina A1 - Iredale, G. A1 - Cosemans, P. A1 - Simmons, L. M. A1 - Verran, J. A1 - Redfern, J. T1 - How do we determine the efficacy of an antibacterial surface? A review of standardised antibacterial material testing methods N2 - Materials that confer antimicrobial activity, be that by innate property, leaching of biocides or design features (e.g., non-adhesive materials) continue to gain popularity to combat the increasing and varied threats from microorganisms, e.g., replacing inert surfaces in hospitals with copper. To understand how efficacious these materials are at controlling microorganisms, data is usually collected via a standardised test method. However, standardised test methods vary, and often the characteristics and methodological choices can make it difficult to infer that any perceived antimicrobial activity demonstrated in the laboratory can be confidently assumed to an end-use setting. This review provides a critical analysis of standardised methodology used in academia and industry, and demonstrates how many key methodological choices (e.g., temperature, humidity/moisture, airflow, surface topography) may impact efficacy assessment, highlighting the need to carefully consider intended antimicrobial end-use of any product. KW - Antimicrobial materials KW - Antimicrobial testing KW - ISO 22196 KW - Antimicrobial surfaces KW - Antibacterial coatings PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-532138 SN - 2079-6382 VL - 10 IS - 9 SP - 1 EP - 14 PB - MDPI CY - Basel AN - OPUS4-53213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Stephan, Ina A1 - Askew, P. A1 - Gorbushina, Anna A1 - Grinda, Manfred A1 - Hertel, Horst A1 - Krumbein, W.E. A1 - Müller, R.-J. A1 - Pantke, Michael A1 - Plarre, Rüdiger A1 - Schmitt, G. A1 - Schwibbert, Karin ED - Czichos, Horst ED - Saito, T. ED - Smith, L. T1 - Biogenic impact on materials N2 - Materials as constituents of products or components of technical systems rarely exist in isolation and many must cope with exposure in the natural world. This chapter describes methods that simulate how a material is influenced through contact with living systems such as microorganisms and arthropods. Both unwanted and desirable interactions are considered. This biogenic impact on materials is intimately associated with the environment to which the material is exposed (Materials-Environment Interaction, Chap. 15). Factors such as moisture, temperature and availability of food sources all have a significant influence on biological systems. Corrosion (Chap. 12) and wear (Chap. 13) can also be induced or enhanced in the presence of microorganisms. Section 14.1 introduces the categories between desired (biodegradation) and undesired (biodeterioration) biological effects on materials. It also introduces the role of biocides for the protection of materials. Section 14.2 describes the testing of wood as a building material especially against microorganisms and insects. Section 14.3 characterizes the test methodologies for two other groups of organic materials, namely polymers (Sect. 14.3.1) and paper and textiles (Sect. 14.3.2). Section 14.4 deals with the susceptibility of inorganic materials such as metals (Sect. 14.4.1), concrete (Sect. 14.4.2) and ceramics (Sect. 14.4.3) to biogenic impact. Section 14.5 treats the testing methodology concerned with the performance of coatings and coating materials. In many of these tests specific strains of organisms are employed. It is vital that these strains retain their ability to utilize/attack the substrate from which they were isolated, even when kept for many years in the laboratory. Section 14.6 therefore considers the importance of maintaining robust and representative test organisms that are as capable of utilizing a substrate as their counterparts in nature such that realistic predictions of performance can be made. KW - Materialschutz KW - Biologie KW - Organismus KW - Standard KW - Prüfung PY - 2011 SN - 978-3-642-16640-2 SP - 769 EP - 844 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-24210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Redfern, J. A1 - Tucker, J. A1 - Simmons, L. A1 - Askew, P. A1 - Verran, J. A1 - Stephan, Ina T1 - Environmental and experimental factors affecting efficacy testing on nonporous plastic antimicrobial surfaces N2 - Test methods for efficacy assessment of antimicrobial coatings are not modelled on a hospital environment, and instead use high humidity (>90%) high temperature (37 ◦C), and no airflow. Therefore, an inoculum will not dry, resulting in an antimicrobial surface exhibiting prolonged antimicrobial activity, as moisture is critical to activity. Liquids will dry quicker in a hospital ward, resulting in a reduced antimicrobial efficacy compared to the existing test, rendering the test results artificially favourable to the antimicrobial claim of the product. This study aimed to assess how hospital room environmental conditions can affect the drying time of an inoculum, and to use this data to inform test parameters for antimicrobial efficacy testing based on the hospital ward. The drying time of different droplet sizes, in a range of environmental conditions likely found in a hospital ward, were recorded (n = 630), and used to create a model to inform users of the experimental conditions required to provide a drying time similar to what can be expected in the hospital ward. Drying time data demonstrated significant (p < 0.05) variance when humidity, temperature, and airflow were assessed. A mathematical model was created to select environmental conditions for in vitro antimicrobial efficacy testing. Drying time in different environmental conditions demonstrates that experimental set-ups affect the amount of time an inoculum stays wet, which in turn may affect the efficacy of an antimicrobial surface. This should be an important consideration for hospitals and other potential users, whilst future tests predict efficacy in the intended end-use environment. KW - Method development KW - Standardisation KW - Antimicrobial test KW - Environmental conditions KW - Hospital premises PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-472699 SN - 2409-9279 VL - 1 IS - 4 SP - 36, 1 EP - 10 PB - MDPI CY - Internet open accsess AN - OPUS4-47269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -