TY - JOUR A1 - Askar, Enis A1 - Aksam, A. A1 - Brandes, E. A1 - Markus, D. A1 - Stolz, T. T1 - Berechnung der Explosionsbereiche von Alkoholen, Ketonen und halogenierten Kohlenwasserstoffen im Gemisch mit Inertgasen JF - PTB Mitteilungen 1/2020 N2 - Die Explosionsbereiche für Dreistoffsysteme aus Brennstoff Inertgas und Luft wurden nach dem Modell der konstanten adiabatischen Flammentemperaturprofile berechnet. Für die Parametrisierung des halbempirischen Modells muss der Explosionsbereich für ein bestimmtes Dreistoffsystem aus Brennstoff, Inertgas und Luft bekannt sein. Dann lassen sich Explosionsbereiche desselben Brennstoffs mit einem beliebigen Inertgas und bei einer beliebigen Temperatur berechnen. Ergänzend zu früheren Arbeiten, in denen die Explosionsbereiche für Brenngase aus der homologen Reihe der Alkane und Alkene berechnet worden sind, wurden nun die Berechnungen für 1-Propanol, Aceton und Difluormethan durchgeführt. Als Inertgase wurden neben Stickstoff und Kohlendioxid auch die Edelgase Argon und Helium berücksichtigt. Für die Berechnung der Explosionsbereiche in Systemen mit Helium, ist das Modell erweitert worden, so dass auch die Transporteigenschaften (d.h. Wärmeleitfähigkeit, Diffusionskoeffizient) der Komponenten berücksichtigt werden. Weiterhin ist eine Möglichkeit zur praxisnahen Berechnung der Spitze des Explosionsbereichs implementiert worden. Die Ergebnisse zeigen insgesamt, dass die Berechnung der Explosionsbereiche für Alkohole, Ketone und halogenierte Kohlenwasserstoffe mit ähnlicher Genauigkeit wie für Alkane und Alkene möglich ist. Die vorgenommenen Modifikationen sind geeignet, um auch eine Berechnung für Gasgemische mit Helium durchzuführen, dessen starke inertisierende Wirkung im Vergleich zu den Inertgasen Argon oder Stickstoff vor allem auf den stark unterschiedlichen Transporteigenschaften beruht. KW - Explosionsgrenzen KW - Inertisierung KW - Modell der konstanten Flammentemperaturen KW - Explosionsschutz PY - 2020 DO - https://doi.org/10.7795/310.20200199 SN - 0030-834X VL - 130 IS - 1 SP - 25 EP - 29 AN - OPUS4-50945 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Aksam, A. A1 - Brandes, E. A1 - Markus, D. A1 - Stolz, T. T1 - Berechnung der Explosionsbereiche von Alkoholen, Ketonen und halogenierten Kohlenwasserstoffen im Gemisch mit Inertgasen T2 - Tagungsband zum 15. BAM-PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik N2 - Die Explosionsbereiche für Dreistoffsysteme aus Brennstoff, Inertgas und Luft wurden nach dem Modell der konstanten adiabatischen Flammentemperaturprofile berechnet. Für die Parametrisierung des halbempirischen Modells muss der Explosionsbereich für ein bestimmtes Dreistoffsystem aus Brennstoff, Inertgas und Luft bekannt sein. Dann lassen sich Explosionsbereiche desselben Brennstoffs mit einem beliebigen Inertgas und bei einer beliebigen Temperatur berechnen. Ergänzend zu früheren Arbeiten, in denen die Explosionsbereiche für Brenngase aus der homologen Reihe der Alkane und Alkene berechnet worden sind, wurden nun die Berechnungen für 1-Propanol, Aceton und Difluormethan durchgeführt. Als Inertgase wurden neben Stickstoff und Kohlendioxid auch die Edelgase Argon und Helium berücksichtigt. Für die Berechnung der Explosionsbereiche in Systemen mit Helium, ist das Modell erweitert worden, so dass auch die Transporteigenschaften (d.h. Wärmeleitfähigkeit, Diffusionskoeffizient) der Komponenten berücksichtigt werden. Weiterhin ist eine Möglichkeit zur praxisnahen Berechnung der Spitze des Explosionsbereichs implementiert worden. Die Ergebnisse zeigen insgesamt, dass die Berechnung der Explosionsbereiche für Alkohole, Ketone und halogenierte Kohlenwasserstoffe mit ähnlicher Genauigkeit wie für Alkane und Alkene möglich ist. Die vorgenommenen Modifikationen sind geeignet, um auch eine Berechnung für Gasgemische mit Helium durchzuführen, dessen starke inertisierende Wirkung im Vergleich zu den Inertgasen Argon oder Stickstoff vor allem auf den stark unterschiedlichen Transporteigenschaften beruht. Für die Analyse der physikalischen Vorgänge, die zur Zündung führen, ist eine spezielle Kontaktvorrichtung entwickelt worden. Damit können die Entladungen > 200 µm Länge und mit einer Dauer von > 500 µs an einer bestimmbaren Position erzeugt und untersucht werden. Für die Entladungen an der Zündgrenze bei niedrigen Spannungs- und Stromwerten (max. 30 V, 30 bis 100 mA Konstantstrombegrenzung) sind die Bedingung für die Erzeugung ermittelt worden. Das sind die Rauheit auf der Kontaktoberfläche, die langsame Kontaktöffnungsbewegung und eine geeignet regelnde Spannungsquelle mit Konstantstrombegrenzung. Damit sind für diese Entladungen an der Zündgrenze die Strom-Spannungs-Kennlinie, das Spektrum mit dominierenden Linien von Cadmium-Metalldampf sowie die Temperaturverläufe ermittelt worden. T2 - 15. BAM-PTB-Kolloquium zur chemischen und physikalischen Sicherheitstechnik CY - Brunswick, Germany DA - 21.05.2019 KW - Explosionsgrenzen KW - Inertisierung KW - Modell der konstanten Flammentemperaturen KW - Explosionsschutz PY - 2019 DO - https://doi.org/10.7795/210.20190521J SP - 1 EP - 9 AN - OPUS4-48947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Schröder, Volkmar A1 - Göpfert, T. A1 - Winterleitner, E. A1 - Schwarze, M. T1 - Safety related properties of low-GWP refrigerants N2 - Most fluorinated hydrocarbons that shall replace refrigerants with high GWP. like R134a. are flammable. For evaluating inertization measures for explosion protection. flammability of low-GWP refrigerants R1234yf, R32 and R1132a blended with carbon dioxide. Nitrogen and argon were studied experimentally in a closed autoclave at atmospheric conditions. Furthermore, a calculation method was adapted to reduce the experimental costs for flammability studies on these gas mixtures. For igniting R1234yf in the closed autoclave a newly developed ignition system was used that allows generating electric arcs with high ignition energy. Gas mixtures containing the mildly flammable R1234yf and R32 could be inerted by adding much less inert gas than mixtures containing R1132a, which is more similar to unfluorinated hydrocarbons regarding the explosion regions. By using the adapted model of constant adiabatic flame temperature profiles estimating the explosion limits of fluorinated hydrocarbons was possible with similar accuracy as for unf luorinated hydrocarbons. T2 - 25th IIR International Congress of refrigeration CY - Montreal, Canada DA - 24.08.2019 KW - Explosionsgrenzen KW - Inertisierung KW - Entzündbarkeit KW - Kältemittel KW - R1234f, R32, R1132a PY - 2019 AN - OPUS4-48994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Askar, Enis A1 - Abdelkhalik, A. A1 - Brandes, E. A1 - Markus, D. A1 - Stolz, Th. T1 - Berechnung der Explosionsbereiche von Alkoholen, Ketonen und halogenierten Kohlenwasserstoffen im Gemisch mit Inertgasen N2 - Ergänzend zu früheren Arbeiten. in denen die Explosionsbereiche für Brenngase aus der homologen Reihe der Alkane und Alkene berechnet worden sind, wurden Ergebnisse der Berechnungen für 1-Propanol, Aceton und Difluormethan vorgestellt. Für die Berechnung ist das Modell erweitert worden. so dass auch die Transporteigenschaften der Gasgemische berücksichtigt werden. Weiterhin ist eine neue Methode zur Berechnung der Spitze des Explosionsbereichs implementiert worden. Die Ergebnisse zeigen. dass die Berechnung der Explosionsbereiche für Alkohole. Ketone und halogenierte Kohlenwasserstoffe mit ähnlicher Genauigkeit wie für Alkane und Alkene möglich ist. T2 - 15. BAM-PTB-Kolloquium 2019 CY - Braunschweig, Germany DA - 21.05.2019 KW - Explosionsgrenzen KW - Inertisierung KW - Modell der konstanten Flammentemperaturen KW - Explosionsschutz PY - 2019 AN - OPUS4-48542 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -