TY - CONF A1 - Neumann, Patrick P. A1 - Asadi, S. A1 - Schiller, J.H. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias T1 - An artificial potential field based sampling strategy for a gas-sensitive micro-drone N2 - This paper presents a sampling strategy for mobile gas sensors. Sampling points are selected using a modified artificial potential field (APF) approach, which balances multiple criteria to direct sensor measurements towards locations of high mean concentration, high concentration variance and areas for which the uncertainty about the gas distribution model is still large. By selecting in each step the most often suggested close-by measurement location, the proposed approach introduces a locality constraint that allows planning suitable paths for mobile gas sensors. Initial results in simulation and in real-world experiments with a gas-sensitive micro-drone demonstrate the suitability of the proposed sampling strategy for gas distribution mapping and its use for gas source localization. T2 - IEEE/RSJ International conference on intelligent robots and systems (IROS '11) / Workshop on robotics for environmental monitoring (WREM2011) CY - San Francisco, CA, USA DA - 25.09.2011 KW - Autonomous UAV KW - Chemical sensing KW - Gas distribution modelling KW - Gas source localization KW - Gas sensors KW - Mobile sensing system KW - Quadrocopter KW - Sensor planning KW - Artificial potential field PY - 2011 SP - 34 EP - 38 AN - OPUS4-24537 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Neumann, Patrick P. A1 - Asadi, S. A1 - Lilienthal, A.J. A1 - Bartholmai, Matthias A1 - Schiller, J.H. T1 - Autonomous gas-sensitive microdrone - wind vector estimation and gas distribution mapping N2 - This article presents the development and validation of an autonomous, gas sensitive microdrone that is capable of estimating the wind vector in real time using only the onboard control unit of the microdrone and performing gas distribution mapping (DM). Two different sampling approaches are suggested to address this problem. On the one hand, a predefined trajectory is used to explore the target area with the microdrone in a real-world gas DM experiment. As an alternative sampling approach, we introduce an adaptive strategy that suggests next sampling points based on an artificial potential field (APF). Initial results in real-world experiments demonstrate the capability of the proposed adaptive sampling strategy for gas DM and its use for gas source localization. KW - Anemometric sensor KW - Autonomous micro UAV KW - Chemical sensing KW - Gas distribution modelling KW - Gas source localization KW - Gas sensors KW - Mobile sensing system KW - Quadrocopter KW - Sensor planning KW - Artificial potential field PY - 2012 U6 - https://doi.org/10.1109/MRA.2012.2184671 SN - 1070-9932 VL - 19 IS - 1 SP - 50 EP - 61 PB - IEEE CY - New York, NY, USA AN - OPUS4-25773 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -