TY - JOUR A1 - Oster, Simon A1 - Breese, Philipp Peter A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - A deep learning framework for defect prediction based on thermographic in-situmonitoring in laser powder bed fusion N2 - The prediction of porosity is a crucial task for metal based additive manufacturing techniques such as laser powder bed fusion. Short wave infrared thermography as an in-situ monitoring tool enables the measurement of the surface radiosity during the laser exposure. Based on the thermogram data, the thermal history of the component can be reconstructed which is closely related to the resulting mechanical properties and to the formation of porosity in the part. In this study, we present a novel framework for the local prediction of porosity based on extracted features from thermogram data. The framework consists of a data pre-processing workflow and a supervised deep learning classifier architecture. The data pre-processing workflow generates samples from thermogram feature data by including feature information from multiple subsequent layers. Thereby, the prediction of the occurrence of complex process phenomena such as keyhole pores is enabled. A custom convolutional neural network model is used for classification. Themodel is trained and tested on a dataset from thermographic in-situ monitoring of the manufacturing of an AISI 316L stainless steel test component. The impact of the pre-processing parameters and the local void distribution on the classification performance is studied in detail. The presented model achieves an accuracy of 0.96 and an f1-Score of 0.86 for predicting keyhole porosity in small sub-volumes with a dimension of (700 × 700 × 50) μm3. Furthermore, we show that pre-processing parameters such as the porosity threshold for sample labeling and the number of included subsequent layers are influential for the model performance. Moreover, the model prediction is shown to be sensitive to local porosity changes although it is trained on binary labeled data that disregards the actual sample porosity. KW - Laser Powder Bed Fusion (PBF-LB/M, L-PBF) KW - Selective Laser Melting (SLM) KW - SWIR thermography KW - Online monitoring KW - Flaw detection KW - Machine learning KW - Convolutional neural networks (CNN) PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-575148 SN - 0956-5515 SP - 1 EP - 20 PB - Springer AN - OPUS4-57514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hilgenberg, Kai A1 - Daum, Werner A1 - Maierhofer, Christiane A1 - Altenburg, Simon A1 - Bruno, Giovanni A1 - Heckel, Thomas A1 - Skrotzki, Birgit A1 - Zerbst, Uwe A1 - Kranzmann, Axel A1 - Bettge, Dirk A1 - Sommer, Konstantin A1 - Seeger, Stefan A1 - Nitsche, Michael A1 - Günster, Jens A1 - Evans, Alexander T1 - Additive manufacturing at the BAM: We focus on Safety N2 - In Germany, the Federal Institute for Materials Research and Testing (BAM) is addressing challenges in the implementation of additive manufacturing on the industrial landscape for safety-critical applications. KW - Process development KW - Additive Manufacturing KW - In-situ Process Monitoring KW - Non-destructive Materials KW - Characterisation KW - Safety KW - Fatigue KW - Environment KW - Standardisation PY - 2019 UR - https://static.asminternational.org/amp/201910/22/ SN - 0882-7958 VL - 177 IS - 7 SP - 22 EP - 26 PB - ASM International CY - Materials Park, OH, USA AN - OPUS4-49780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Bruno, Giovanni ED - Czujko, T. ED - Benedetti, M. T1 - Can Potential Defects in LPBF Be Healed from the Laser Exposure of Subsequent Layers? A Quantitative Study N2 - Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 µm) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion. KW - Computed tomography KW - Laser Powder Bed Fusion KW - In situ monitoring KW - infrared Thermography KW - Optical Tomography KW - Additive manufacturing KW - AISI 316L PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-528778 VL - 11 IS - 7 SP - 1012 PB - MDPI CY - Basel AN - OPUS4-52877 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Comparison of MWIR and NIR thermography in a laser metal deposition (LMD) process N2 - Additive manufacturing (AM) offers a range of novel applications. However, the manufacturing process is complex and the production of defect-free parts with a high reliability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal AM processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of first measurements during the manufacturing process of a commercial laser metal deposition (LMD) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - ProMoAM PY - 2018 AN - OPUS4-45408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Laser powder bed fusion (L-PBF) is the most prominent additive manufacturing (AM) technology for metal part production. Among the high number of factors influencing part quality and mechanical properties, the inter layer time (ILT) between iterative melting of volume elements in subsequent layers is almost completely unappreciated in the relevant literature on L-PBF. This study investigates the effect of ILT with respect to build height and under distinct levels of volumetric energy density (VED) using the example of 316L stainless steel. In-situ thermography is used to gather information on cooling conditions during the process, which is followed by an extensive metallographic analysis. Significant effects of ILT and build height on heat accumulation, sub-grain sizes, melt pool geometries and hardness are presented. Furthermore, the rise of defect densities can be attributed to a mutual interplay of build height and ILT. Hence, ILT has been identified as a crucial factor for L-PBF of real part components especially for those with small cross sections. KW - Laser powder bed fusion (L-PBF) KW - Laser beam melting (LBM) KW - Selective laser melting (SLM) KW - Dwell-time KW - Thermography PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-503300 SN - 2214-8604 VL - 32 SP - 101080-1 EP - 101080-13 PB - Elsevier CY - Amsterdam AN - OPUS4-50330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Nowakowski, Susanna A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - Experimental Determination of the Emissivity of Powder Layers and Bulk Material in Laser Powder Bed Fusion Using Infrared Thermography and Thermocouples N2 - Recording the temperature distribution of the layer under construction during laser powder bed fusion (L-PBF) is of utmost interest for a deep process understanding as well as for quality assurance and in situ monitoring means. While having a notable number of thermal monitoring approaches in additive manufacturing (AM), attempts at temperature calibration and emissivity determination are relatively rare. This study aims for the experimental temperature adjustment of an off-axis infrared (IR) thermography setup used for in situ thermal data acquisition in L-PBF processes. The temperature adjustment was conducted by means of the so-called contact method using thermocouples at two different surface conditions and two different materials: AISI 316L L-PBF bulk surface, AISI 316L powder surface, and IN718 powder surface. The apparent emissivity values for the particular setup were determined. For the first time, also corrected, closer to real emissivity values of the bulk or powder surface condition are published. In the temperature region from approximately 150 °C to 580 °C, the corrected emissivity was determined in a range from 0.2 to 0.25 for a 316L L-PBF bulk surface, in a range from 0.37 to 0.45 for 316L powder layer, and in a range from 0.37 to 0.4 for IN718 powder layer. KW - Emisssivity KW - Laser Powder Bed Fusion (L-PBF) KW - Selective Laser Melting (SLM) KW - Additive Manufacturing (AM) KW - Process monitoring KW - Infrared thermography PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516148 VL - 10 IS - 11 SP - 1546 PB - MDPI CY - Basel, Schweiz AN - OPUS4-51614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Heinrich, Ph. A1 - Baum, D. A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography N2 - Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data Integration are presented. KW - Laser powder bed fusion (L-PBF) KW - Selective laser melting (SLM) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Data fusion KW - Lack-of-fusion PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-502417 VL - 10 IS - 1 SP - 103 PB - MDPI CY - Basel, Schweiz AN - OPUS4-50241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Altenburg, Simon A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Maierhofer, Christiane T1 - In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography N2 - Additive manufacturing offers a range of novel applications. However, the manufacturing process is complex and the production of almost defect-free parts with high reliability and durability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal additive manufacturing processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of measurements during the manufacturing process of a commercial laser metal deposition setup using a mid wavelength infrared camera with those from a short wavelength infrared camera and those from a visual spectrum high-speed camera with band pass filter in the near infrared range. KW - Additive Manufacturing KW - Process monitoring KW - Thermography KW - LMD KW - Metal KW - MWIR KW - SWIR KW - NIR PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-516318 VL - 19 IS - 2 SP - 97 EP - 114 PB - Taylor & Francis Group CY - London, UK AN - OPUS4-51631 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Gornushkin, Igor B. A1 - Baensch, Franziska A1 - Rethmeier, Michael T1 - In-situ Prozessüberwachung beim Laser-Pulver-Auftragschweißen (LPA) mittels Thermografie, optischer Emissionsspektroskopie (OES) und Schallemissionsanalyse (SEA) N2 - Vor allem in den letzten Jahren ist das Interesse der Industrie an der additiven Fertigung deutlich gestiegen. Die Vorteile dieser Verfahren sind zahlreich und ermöglichen eine ressourcenschonende, kundenorientierte Fertigung von Bauteilen, welche zur stetigen Entwicklung neue Anwendungsbereiche und Werkstoffe führen. Aufgrund der steigenden Anwendungsfälle, nimmt auch der Wunsch nach Betriebssicherheit unabhängig von anschließenden kostenintensiven zerstörenden und zerstörungsfreien Prüfverfahren zu. Zu diesem Zweck werden im Rahmen des von der BAM durchgeführten Themenfeldprojektes „Prozessmonitoring in Additive Manufacturing“ verschiedenste Verfahren auf ihre Tauglichkeit für den in-situ Einsatz bei der Prozessüberwachung in der additiven Fertigung untersucht. Hier werden drei dieser in-situ Verfahren, die Thermografie, die optische Emissionsspektroskopie und die Schallmissionsanalyse für den Einsatz beim Laser-Pulver-Auftragschweißen betrachtet. T2 - 41. Assistentenseminar der Füge- und Schweißtechnik CY - Magdeburg, Germany DA - 02.09.2020 KW - Laser-Pulver-Auftragschweißen (LPA) KW - Thermographie KW - Optische Emissionsspektroskopie (OES) KW - Schallemissionsanalyse (SEA) PY - 2021 SN - 978-3-96144-141-9 VL - 370 SP - 132 EP - 140 PB - DVS MEdia CY - Düsseldorf AN - OPUS4-53967 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Maierhofer, Christiane A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Heinrich, P. A1 - Baum, D. A1 - Hilgenberg, Kai T1 - In-situ Prozessüberwachung in der additiven Fertigung von Metallen mittels optischer Verfahren N2 - Einer der aussichtsreichsten Ansätze, die Qualität und Sicherheit der gefertigten Teile in der metallbasierten additiven Fertigung (AM) zu erhöhen und die Notwendigkeit aufwändiger und zeitintensiver, zerstörender oder zerstörungsfreier Prüfungen (ZfP) nach der Fertigung zu verringern, liegt in dem Einsatz von in-situ Prozessüberwachungstechniken. Bereits jetzt werden erste Messsysteme zur Kontrolle der Energiequelle, des Bauraums, des Schmelzbades und der Bauteilgeometrie kommerziell angeboten. Weitere ZfP Verfahren, wie z.B. die aktive und passive Thermografie, werden in der Literatur als geeignet für die in-situ Anwendung angesehen, allerdings gibt es noch wenig konkrete praktische Umsetzungen, da die Möglichkeiten und individuellen Grenzen dieser Methoden, angewendet auf AM, noch nicht ausreichend erforscht sind. Aus diesem Grund verfolgt die BAM mit dem Projekt „Process Monitoring of AM“ (ProMoAM) im Themenfeld Material das Ziel, Verfahren des Prozessmonitorings zur in-situ Bewertung der Qualität additiv gefertigter Metallbauteile weiterzuentwickeln. Im Beitrag wird zunächst das Projekt vorgestellt und anschließend der Fokus auf eine Messserie gelegt, in der Probekörper aus dem austenitischen Edelstahl 316L mit lokal variierenden Prozessparametern mittels selektiven Laserschmelzen (L-PBF) aufgebaut wurden. Der Bauprozess wurde hierbei durch das maschineneigene, koaxial arbeitende Photodiodensystem (Melt-Pool-Monitoring), einer Mittelwellen-Infrarotkamera und einer optischen Tomografiekamera im sichtbaren Wellenlängenbereich (Langzeitbelichtung für die Dauer eines Lagenaufbaus mit einer CMOS-Kamera mit hoher Ortsauflösung) simultan überwacht. Als Referenz für diese Methoden wurden die Probekörper mittels Computertomografie untersucht. Für die dabei anfallenden teils großen Datenmengen wurden Algorithmen für ein effizientes Preprocessing entwickelt. Es wurden Merkmale der Messdaten in Korrelation zu Fehlern und Inhomogenitäten extrahiert, welche für die einzelnen Methoden vergleichend vorgestellt und diskutiert werden. T2 - 5. Tagung des Arbeitskreises Additiv gefertigte Bauteile und Strukturen CY - Online meeting DA - 04.11.2020 KW - Additive Fertigung KW - Prozessüberwachung KW - Thermografie KW - Optische Tomografie KW - Computertomografie KW - L-PBF KW - AM KW - CT KW - In-situ PY - 2020 AN - OPUS4-51627 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -