TY - JOUR A1 - Göbel, M. A1 - Kirsch, S. A1 - Schwarze, L: A1 - Schmidt, L. A1 - Scholz, H. A1 - Haußmann, J. A1 - Klages, M. A1 - Scholta, J. A1 - Markötter, H. A1 - Alrwashdeh, S. A1 - Manke, I. A1 - Müller, Bernd R. T1 - Transient limiting current measurements for characterization of gas diffusion layers N2 - The water management in proton exchange membrane fuel cells (PEMFC) is strongly influenced by the design of the gas diffusion layers (GDL). Limiting current measurements in small-scale cells operating at high stoichiometries are useful to determine the oxygen transport resistance. The oxygen transport resistance increases, once water condenses inside the GDL. In this study a new electrochemical method for voltage loss estimation of GDL induced oxygen transport losses are presented. This new method, referred to as “transient limiting current” (TLC), is compared with the literature method. TLC allows a direct estimation of oxygen transport resistance at an arbitrarily conditioned state. This study also presents a case study of liquid water visualization of a PEM fuel cell with varying GDLs types. With the help of quasi in-situ synchrotron X-ray computed tomography and time resolved radiography measurements we investigate appearance and distribution of liquid water inside the GDLs under limiting current conditions. KW - In-situ characterization of GDLs KW - In-situ synchrotron X-ray computed tomography KW - In-situ synchrotron X-ray radiography KW - BAMline PY - 2018 U6 - https://doi.org/10.1016/j.jpowsour.2018.09.003 SN - 0378-7753 SN - 1873-2755 VL - 402 SP - 237 EP - 245 PB - Elsevier B.V. AN - OPUS4-46552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Alrwashdeh, S. S. A1 - Markötter, H. A1 - Haußmann, J. A1 - Hilger, A. A1 - Klages, M. A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Riesemeier, Heinrich A1 - Scholta, J. A1 - Manke, I. T1 - Investigation of water transport in newly developed micro porous layers for polymer electrolyte membrane fuel cells N2 - In this investigation, synchrotron X-ray imaging was used to investigate the water distribution inside newly developed gas diffusion media in polymer electrolyte membrane fuel cells. In-situ radiography was used to reveal the relationship between the structure of the microporous layer (MPL) and the water flow in a newly developed MPL equipped with randomly arranged holes. A strong influence of these holes on the overall water transport was found. This contribution provides a brief overview to some of our recent activities on this research field. KW - Polymer electrolyte membrane fuel cell KW - Microporous layer KW - Water distribution KW - Radiography KW - Synchrotron X-ray imaging PY - 2017 U6 - https://doi.org/10.9729/AM.2017.47.3.101 SN - 2287-4445 SN - 2287-5123 VL - 47 IS - 3 SP - 101 EP - 104 AN - OPUS4-43356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -