TY - JOUR A1 - Agroui, K. A1 - Jaunich, Matthias A1 - Hadj Arab, A. T1 - Analysis techniques of polymeric encapsulant materials for photovoltaic modules: situation and perspectives N2 - The properties of the encapsulant are critical to the long-term performance of photovoltaic (PV) modules under the influence of sunlight including UV, elevated temperature, humidity and diffusion of oxygen. Encapsulation process represents a bout 40% of the whole PV module cost. The introduction of new non-EVA encapsulant material type "Low-Cost, High-Performance" should provide a solution to outdoor yellowing degradation problems. The emerging encapsulant materials exhibit a good compatibility with emerging PV solar cells for long term durability. This new generation of encapsulant materials has the advantage to improve e the PV module performances and long term durability for specific climate like desert regions. This scientific contribution presents an overview of the different encapsulant materials currently on the market, the general requirements of the emerging encapsulant materials and characterizations techniques for degradation, diagnostic and reliability lifetime estimation in the framework of Algerian renewable energy strategy. T2 - Africa-EU Renewable Energy Re search and Innovation Symposium, RERIS 2016 CY - Tlemcen, Algeria DA - 08.03.2016 KW - Solar cell KW - Polymer encapsulant KW - PV module KW - Encapsulation process KW - Analysis technique PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-377186 SN - 1876-6102 VL - 2016 IS - 93 SP - 203 EP - 210 PB - Elsevier Ltd. AN - OPUS4-37718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agroui, K. A1 - Jaunich, Matthias A1 - Hadj Arab, A. T1 - Analysis techniques of polymeric encapsulant materials for photovoltaic modules: Situation and perspectives N2 - The properties of the encapsulant are critical to the long-term performance of photovoltaic (PV) modules under the influence of sunlight including UV, elevated temperature, humidity and diffusion of oxygen. Encapsulation process represents about 40% of the whole PV module cost. The introduction of new non-EVA encapsulant material type “Low-Cost, High-Performance” should provide a solution to outdoor yellowing degradation problems. The emerging encapsulant materials exhibit a good compatibility with emerging PV solar cells for long term durability. This new generation of encapsulant materials has the advantage to improve the PV module performances and long term durability for specific climate like desert regions. This scientific contribution presents an overview of the different encapsulant materials currently on the market, the general requirements of the emerging encapsulant materials and characterizations techniques for degradation, diagnostic and reliability lifetime estimation in the framework of Algerian renewable energy strategy. T2 - Africa-EU Symposium on Renewable Energy Research and Innovation CY - Tlemcen, Algeria DA - 08.03.2016 KW - solar cells KW - PV module KW - polymer encapsulant KW - encapsulation KW - analysis techniques PY - 2016 AN - OPUS4-35916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agroui, K. A1 - Jaunich, Matthias A1 - Hadj Arab, A. T1 - Analysis techniques of polymeric encapsulant materials for photovoltaic modules: Situation and perspectives N2 - The properties of the encapsulant are critical to the long-term performance of photovoltaic (PV) modules under the influence of sunlight including UV, elevated temperature, humidity and diffusion of oxygen. Encapsulation process represents about 40% of the whole PV module cost. The introduction of new non-EVA encapsulant material type “Low-Cost, High-Performance” should provide a solution to outdoor yellowing degradation problems. The emerging encapsulant materials exhibit a good compatibility with emerging PV solar cells for long term durability. This new generation of encapsulant materials has the advantage to improve the PV module performances and long term durability for specific climate like desert regions. This scientific contribution presents an overview of the different encapsulant materials currently on the market, the general requirements of the emerging encapsulant materials and characterizations techniques for degradation, diagnostic and reliability lifetime estimation in the framework of Algerian renewable energy strategy. T2 - Africa-EU Symposium on Renewable Energy Research and Innovation CY - Tlemcen, Algeria DA - 08.03.2016 KW - solar cells KW - PV modules KW - polymer encapsulant KW - encapsulation KW - analysis techniques PY - 2016 SP - 27 EP - 27 PB - European Union Energy Initiative – Partnership Dialogue Facility (EUEI PDF) CY - Eschborn, Germany AN - OPUS4-35917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Agroui, K. A1 - Collins, G. A1 - Oreski, G. A1 - Böhning, Martin A1 - Hadj Arab, A. A1 - Ouadjaout, D. T1 - Effect of crosslinking on EVA-based encapsulant properties during photovoltaic module fabrication process N2 - The key objective of this work is to create a comprehensive comparison between experimental analysis methods for detecting crosslinking reaction in EVA encapsulant material during PV module fabrication process. Several analytical methods, spanning from classical gel content extraction measurements over different thermo-analytic and mechanical approaches to spectroscopic analysis as Thermally Stimulated Current (TSC), have been investigated as to their ability to reveal the crosslinking state of ethylene vinyl acetate (EVA). The basic results show that TSC complements perfectly other thermal analysis methods like as Differential Scanning Calorimetry (DSC), Dynamic Mechanical Thermal Analysis (DMTA) to determine fundamental properties of EVA such as molecular mobility characteristics and also to monitor the crosslinking reaction. Exothermic peak as revealed by DSC analysis can be used to estimate the crosslinking rate of EVA during PV module encapsulation process as fast quality control test. ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ L'objectif principal de ce travail est de permettre une meilleure compréhension entre les différentes techniques analyses expérimentales pour détecter la réaction de réticulation au niveau de l’encapsulant Ethylène-Vinyle Acétate (EVA), durant le process de fabrication d'un module PV. Plusieurs méthodes d'analyse, allant du test classique d'extraction du taux de gel aux différentes techniques d'analyses thermomécaniques ainsi que les techniques d'analyse de spectroscopie comme le courant stimulé thermiquement (TSC), ont été étudiés pour permettre de révéler le phénomène de la réaction de réticulation de l'encapsulant l'EVA. Les résultats de base montrent que la TSC complète parfaitement d'autres méthodes d'analyses thermiques comme la calorimétrie différentielle à balayage (DSC), l'analyse mécanique dynamique (DMTA) pour déterminer les propriétés fondamentales de l'EVA. Ces techniques permettent de déterminer les caractéristiques relatives à la mobilité moléculaire et aussi pour mieux mettre en évidence la réaction de réticulation. Le pic exothermique comme révélé par l'analyse par DSC, peut être utilisé pour estimer le taux de réticulation de l'EVA au cours du process d'encapsulation du module PV comme un test rapide de contrôle de qualité. KW - EVA KW - Photovoltaic module KW - Crosslinking process KW - Thermal properties KW - Mechanical properties PY - 2015 SN - 1112-2242 VL - 18 IS - 2 SP - 303 EP - 314 AN - OPUS4-34994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arfi, W. A1 - Khan, A. A1 - Moulai, F. A1 - Agroui, K. A1 - Baretta, C. A1 - Oreski, G. A1 - Jaunich, Matthias ED - Munday, J. ED - Bermel, P. ED - Kempe, M. T1 - Optical and thermal analysis of PVB encapsulant polymer functionalized with luminescent organic dyes N2 - This work focused on the technology of luminescent down shift (LDS), with a primary aim to identify and investigate a methodology to introduce the luminescent organic dye into PVB polymer encapsulant as emergent material for photovoltaic application. For this goal, we propose to study the feasibility to implement the LDS functionality and to identify suitability of available luminescent to be incorporated into the host polymer encapsulant material. The first step to this direction was through a comprehensive optical study of Violet 570 (V) organic dye in ethanol solvent. The methodology and experimental conditions such as laboratory polymer preparation and luminescence dye concentration were presented. Also, the emergent polymer encapsulant sheets were characterized by using optical and thermal analysis techniques. The absorption spectrum of the prepared PVB material shifts towards longer wavelengths, with increasing organic dye concentration. T2 - New Concepts in Solar and Thermal Radiation Conversion and Reliability CY - San Diego, California, United States DA - 19.08.2018 KW - Photovoltaic KW - Encapsulation KW - Luminescence PY - 2018 SN - 9781510620902 U6 - https://doi.org/10.1117/12.2318428 SN - 1996-756X SP - Paper OH, 1 PB - SPIE CY - Bellingham, Washington, USA AN - OPUS4-47165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -