TY - JOUR A1 - Abali, B. E. A1 - Wu, Cheng-Chieh A1 - Müller, W.H. T1 - An energy-based method to determine material constants in nonlinear rheology with applications N2 - Many polymer-type materials show a rate-dependent and nonlinear rheological behavior. Such a response may be modeled by using a series of spring-dashpot systems. However, in order to cover different time scales the number of systems may become unreasonably large. A more appropriate treatment based on continuum mechanics will be presented herein. This approach uses representation theorems for deriving material equations and allows for a systematic increase in modeling complexity. Moreover, we propose an approach based on energy to determine thematerial parameters.This method results in a simple linear regression problemeven for highly nonlinearmaterial equations. Therefore, the inverse problem leads to a unique solution. The significance of the proposed method is that the stored and dissipated energies necessary for the procedure are measurable quantities. We apply the proposed method to a 'semi-solid' material and measure its material parameters by using a simple-shear rheometer. KW - Material equations KW - Constitutive relations KW - Nonlinear rheology KW - Simple-shear rheometer KW - Inverse analysis PY - 2016 U6 - https://doi.org/10.1007/s00161-015-0472-z SN - 0935-1175 SN - 1432-0959 VL - 28 IS - 5 SP - 1221 EP - 1246 PB - Springer CY - Berlin AN - OPUS4-34333 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -