TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Numerical Simulation of Mechanically Mixed Layer Formation at Local Contacts of an Automotive Brake System KW - Nanotribology KW - Automotive Brakes KW - Dynamic Modelling KW - Friction Mechanisms KW - Mechanically Mixed Layer KW - Movable Cellular Automata PY - 2008 DO - https://doi.org/10.1080/10.40.2000802380314 SN - 1040-2004 SN - 1547-397X VL - 51 SP - 1 EP - 7 PB - Taylor & Francis CY - Philadelphia, Pa. AN - OPUS4-18696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Prietzel, Claudia A1 - Kloß, Heinz A1 - Dmitriev, Andrey T1 - On the role of copper in brake friction materials N2 - Copper is a major ingredient in friction materials used for automotive braking. The purpose of this study was to find out how copper contributes to good brake performance properties in addition to providing good thermal conductivity. Microstructural investigations of copper chips at the surfaces of brake pads revealed a zone of severe plastic deformation which provides high hardness, but there is also evidence of recrystallized copper nano-particles which are incorporated into friction layers as soft ingredient once detached from the pad surface. Thus copper seems to play a dual role, firstly as reinforcing element of the brake pad providing primary contact sites, and secondly as solid lubricant by contributing to the formation of a layer of granular material providing velocity accommodation between the rotating disc and fixed pad. Confirmation for this hypothesis was obtained by modelling contact sites on the nanometre scale with the method of movable cellular automata. Results show both, the similarity of steel fibres and copper macro-particles in respect to providing primary contact sites, as well as similar sliding behaviours of friction layers containing either copper or graphite as soft inclusions. Furthermore, it is shown that not only material properties, but also the concentration of solid lubricant particles in the friction layers, determine conditions for friction force stabilization and smooth sliding behaviour. KW - Friction material KW - Friction layer KW - Copper macro-particle KW - Copper nano-particle PY - 2010 DO - https://doi.org/10.1016/j.triboint.2010.08.005 SN - 0301-679X VL - 43 IS - 12 SP - 2317 EP - 2326 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-22342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Prietzel, Claudia A1 - Dmitriev, Andrey T1 - Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking N2 - The unique nanostructure formed during severe as well as moderate braking on the surface of brake discs was investigated by conventional and analytical Transmission Electron Microscopy. In both cases nanocrystalline magnetite mixed with carbon nanoinclusions and minor amounts of other pad constituents were identified. On the basis of these observations the friction performance of a single micro-contact was simulated with the method of Movable Cellular Automata. Inspite of a simplified nanostructure which was examined in two dimensions only, the calculated mean coefficient of friction fitted well to the value usually demanded for automotive braking. Furthermore, the model predicts that oxide films without soft nanoinclusions are not capable of providing smooth velocity accommodation at the pad–disc interface and thus lead to unstable friction behaviour. KW - Friction KW - Third body film KW - Nanostructure KW - MCA-model KW - EFTEM PY - 2010 SN - 1862-5282 VL - 101 IS - 5 SP - 669 EP - 675 PB - Carl Hanser CY - München AN - OPUS4-22343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Numerical simulation of typical contact situations of brake friction materials N2 - In the paper, a model typical for contact situations of automotive brakes is established based on the method of movable cellular automata. The processes taking place at local contacts in an automotive brake system are analysed. Based on microscopic and micro-analytical observations, the following contact situations were simulated: (i) a couple of ferritic steel against pearlitic steel, both covered by an oxide layer mixed with graphite nanoparticles and (ii) the same situation but without oxide layers. The results of calculated mean coefficients of friction of the oxide-on-oxide contact correspond well to expected values for a real braking system, whereas steel-on-steel contact are twice as high. This allows one to make some conclusions; for example, oxide formation will take place more quickly than friction layer elimination, and finally this is responsible for the stabilisation of the coefficient of friction. KW - Friction KW - Primary contact KW - Automotive brake system KW - Numerical simulation KW - Method of movable cellular automata PY - 2008 DO - https://doi.org/10.1016/j.triboint.2007.04.001 SN - 0301-679X VL - 41 IS - 1 SP - 1 EP - 8 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-15841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Griepentrog, Michael A1 - Klaffke, Dieter T1 - Microstructural characterization of wear particles formed during tribological stressing of TiC and Ti(C,N) coatings N2 - An attempt was undertaken to obtain a better understanding of the tribological properties of two wear-resistant coatings on tool steel by structural and microchemical analysis of wear particles using a transmission electron microscope. Coatings were deposited by physical vapor deposition and plasma-assisted chemical vapor deposition techniques and tribological properties were derived from reciprocating sliding tests of the coatings against alumina balls. Three types of wear particles were identified by electron diffraction and energy dispersive X-ray spectroscopy: nanocrystalline rutile (TiO2), nanocrystalline graphite and microcrystalline graphite. Low coefficients of friction, of the order of 0.2, were attributed to the formation of solid lubricant films of sub-stoichiometric TiO2-x Magnéli phases and/or graphite. KW - Third body KW - Solid lubrication KW - Coating, debris KW - Wear particle KW - TEM PY - 2002 DO - https://doi.org/10.1023/A:1015491027710 SN - 1023-8883 SN - 1573-2711 VL - 12 IS - 4 SP - 229 EP - 234 PB - Springer Science Business Media B.V. CY - Dordrecht AN - OPUS4-1379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Nebauer, E. A1 - Hilsenbeck, J. A1 - Würfl, J. A1 - Klein, A. T1 - XTEM and TFXRD investigations of ohmic Ti/Al/Ti/Au/WSiN contacts on AlGaN/GaN HFET layer systems N2 - The microstructural features of the high-temperature-stable ohmic contact system Ti/Al/Ti/Au/WSiN on AlGaN/GaN were investigated using analytical transmission electron microscopy and thin film x-ray diffraction. For two typical rapid thermal annealing steps at 750 °C (non-ohmic behaviour) and 850 °C (ohmic behaviour) the intermetallic phases at the metal-semiconductor interface are presented. Increased annealing leads to the transformation of an Al2Au-AlAuTi phase mixture to a mixture of Al2Au-Al3Au8 phases and the formation of Ti-Al-nitride layers at the interfaces. In light of these results the electrical contact properties are discussed. PY - 2002 DO - https://doi.org/10.1088/0268-1242/17/3/312 SN - 0268-1242 SN - 1361-6641 VL - 17 IS - 3 SP - 249 EP - 254 PB - IOP Publ. CY - Bristol AN - OPUS4-1380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Ressel, P. T1 - XTEM investigation of Ge/Pd shallow contact to p-IN0.53Ga0.47As N2 - Cross-sectional transmission electron microscopy, in combination with energy dispersive X-ray spectroscopy and focused beam microdiffraction, was applied to study the solid-state reactions taking place during contact formation of the system Ge(115 nm)/Pd(50 nm)—In0.53Ga0.47As. In order to get information about the sequence of the different processes, rapid thermal, annealing experiments in the range 225–400 °C were performed. The following features were observed: at 225 °C Pd reacted with the substrate forming the quaternary phase PdxIn0.53Ga0.47As (x ˜ 4), and with the Ge-layer forming mainly PdGe and Pd2Ge. Between PdxIn0.53Ga0.47As and In0.53Ga0.47As, a 5 nm thick amorphous Pd-In-Ga-As layer remained, indicating that the first reaction step was solid-state amorphization. After annealing at 350 °C, PdxIn0.53Ga0.47As disappeared and regrowth of In0.53Ga0.47As occured. Finally, at 400 °C, residual Ge from the amorphous top layer diffused to the interface and grew epitaxially on the regrown In0.53Ga0.47As, thus separating the III–V compound semiconductor from the Pd-Ge reaction products. The interface remained flat, while only about 10 nm of the active In0.53Ga0.47As layer had been modified during the annealing processes. PY - 1996 DO - https://doi.org/10.1016/0921-5107(96)01580-2 SN - 0921-5107 SN - 1873-4944 VL - 40 IS - 1 SP - 42 EP - 49 PB - Elsevier CY - Amsterdam AN - OPUS4-2513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ressel, P. A1 - Österle, Werner A1 - Urban, Ingrid A1 - Dörfel, Ilona A1 - Klein, A. A1 - Vogel, K. A1 - Kräutle, H. T1 - Transmission electron microscopy study of rapid thermally annealed Pd/Ge contacts on IN0.53Ga0.47As PY - 1996 SN - 0021-8979 SN - 1089-7550 VL - 88 SP - 3910 EP - 3914 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-2514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Link, T. A1 - Österle, Werner T1 - Röntgenmikroanalyse im Elektronenmikroskop, Teil IV: Superlegierungen PY - 1991 SN - 0032-678X VL - 28 SP - 101 EP - 114 PB - Hanser CY - München AN - OPUS4-2469 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klein, A. A1 - Urban, Ingrid A1 - Ressel, P. A1 - Nebauer, E. A1 - Merkel, U. A1 - Österle, Werner T1 - Preparation, transmission electron microscopy, and microanalytical investigations of metal-III-V semiconductor interfaces PY - 1996 SN - 1044-5803 SN - 1873-4189 VL - 37 SP - 143 EP - 151 PB - Elsevier CY - New York, NY AN - OPUS4-2528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -