TY - JOUR A1 - Österle, Werner A1 - Giovannozzi, A. A1 - Gradt, Thomas A1 - Häusler, Ines A1 - Rossi, A. A1 - Wetzel, B. A1 - Zhang, G. A1 - Dmitriev, A.I. T1 - Exploring the potential of Raman spectroscopy for the identification of silicone oil residue and wear scar characterization for the assessment of tribofilm functionality JF - Tribology International N2 - We applied a combination of Raman spectroscopy (RS) and cross-sectional transmission electron microscopy (X-TEM) to identify silicone oil residues and tribofilms at steel disc surfaces after tribological testing. Neither chemical cleaning nor mechanical removal of a 50 µm thick surface layer produced a surface without any silicone residue. Nevertheless, long-term tribological properties are not affected due to silicone degradation which has been proved by Raman spectroscopy. Excellent anti-wear and anti-friction properties of a nanocomposite at severe stressing conditions correlated with the formation of a silica-based tribofilm containing amorphous and graphite-like carbon nanoparticles. Since reliable carbon quantification by analytical TEM is difficult, RS is a useful complementary method for carbon identification at wear scars. KW - Raman spectroscopy KW - Cross-sectional TEM KW - Silicone oil residue KW - Tribofilm PY - 2015 DO - https://doi.org/10.1016/j.triboint.2015.04.046 SN - 0301-679X VL - 90 SP - 481 EP - 490 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-33421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, Andrey T1 - Some considerations on the role of third bodies during automotive braking JF - SAE International journal of passenger cars: mechanical systems N2 - Third bodies, also termed friction layers, tribofilms or secondary contact patches, are layers of more or less compacted wear debris between pads and rotor of a disc brake. Our approach of assessing the sliding behavior and friction properties induced by third bodies has been: i) structural characterization after AK-master test procedure, ii) sliding simulation of model structures similar to the observed ones but with simpler and well defined compositions, and iii) verification of simulation results by pin-on-disc tests with artificial third bodies showing the same microstructures and compositions as the model structures. The idea was to simulate structure formation during real braking conditions by high energy ball milling of appropriate powder blends. The final outcome of numerous parameter studies was that a third body containing 15 vol% soft ingredients and 0-20 vol % hard ingredients, both distributed homogeneously in a nanocrystalline iron oxide matrix, should be most desirable for braking. This general description of the optimum third body structure and several parameter studies performed by modelling enabled us to interpret a number of features of the AK-master test procedure, such as i) friction evolution during bedding, ii) the role of solid lubricants in respect to the initiation of smooth sliding behavior, and iii) friction evolution during a single braking event (in-stop behavior). KW - Tribofilm KW - Thrid body KW - Friction material KW - MCA-modelling KW - Automotive braking PY - 2014 DO - https://doi.org/10.4271/2014-01-2490 SN - 1946-3995 SN - 1946-4002 VL - 7 IS - 4 SP - 1287 EP - 1294 PB - SAE International CY - Warrendale, Pa. AN - OPUS4-31930 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Gradt, Thomas A1 - Häusler, Ines A1 - Hammouri, Basem A1 - Morales Guzman, Pablo Israel A1 - Wetzel, B. A1 - Yigit, D. A1 - Zhang, G. T1 - Exploring the beneficial role of tribofilms formed from an epoxy-based hybrid nanocomposite JF - Tribology International N2 - The composition and nanostructure of a beneficial tribofilm formed during sliding of a hybrid nanocomposite against steel were characterized comprehensively. A similar nanostructure was produced by high energy ball milling of the three identified tribofilm constituents: silica, hematite and graphite. By supplying powders to a pin-on-disc test it has been shown that neither silica, nor hematite, nor a mixture of both provide the low coefficient of friction (COF) observed for the hybrid composite. Only if graphite was blended with the oxides, the low COF was obtained. Thus, a film of finely dispersed stable inorganic wear products containing 15 vol% graphite provides low friction and wear in the considered case. KW - TEM KW - Nanocomposite KW - Tribofilm KW - Ball milling KW - Pin-on-disc test PY - 2015 DO - https://doi.org/10.1016/j.triboint.2015.03.006 SN - 0301-679X VL - 88 SP - 126 EP - 134 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-33035 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A. I. A1 - Wetzel, B. A1 - Zhang, G. A1 - Häusler, Ines A1 - Jim, B.C. T1 - The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite JF - Materials and design N2 - Excellent tribological properties of an advanced polymer matrix composite were obtained by a combination of micro- and nano-sized fillers. Surface features and the nanostructure of tribofilms were characterized by advanced microscopic techniques, and correlated with the macroscopic behavior in terms of wear rate and friction evolution. A model based on movable cellular automata was applied for obtaining a better understanding of the sliding behavior of the nanostructured tribofilms. The failure of the conventional composite without silica nanoparticles could be attributed to severe oxidational wear after degradation of an initially formed polymer transfer film. The hybrid composite preserves its antiwear and antifriction properties because flash temperatures at micron-sized carbon fibers, lead to polymer degradation and subsequent release of nanoparticles. It has been shown that the released particles are mixed with other wear products and form stable films at the disc surface thus preventing further severe oxidational wear. Furthermore, the released wear product also is embedding carbon fibers at the composite surface thus preventing fiber fragmentation and subsequent third body abrasion. With nanoscale modelling we were able to show that low friction and wear can be expected if the nanostructured silica films contain at least 10 vol.% of a soft ingredient. KW - Carbon fibers KW - Silica nanoparticles KW - Hybrid composite KW - Tribological properties KW - Tribofilm KW - Sliding simulation PY - 2016 DO - https://doi.org/10.1016/j.matdes.2015.12.175 SN - 0264-1275 VL - 93 SP - 474 EP - 484 PB - Elsevier AN - OPUS4-35598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Österle, Werner A1 - Deutsch, Cornelius A1 - Dörfel, Ilona A1 - Gradt, Thomas A1 - Häusler, Ines A1 - Orts-Gil, G. A1 - Prietzel, C. A1 - Schneider, Thomas T1 - Final outcome of a fundamental research project on tribofilms formed during automotive braking, Part 1: Experimental studies T2 - EuroBrake 2014 (Proceedings) N2 - In order to obtain a better understanding of the role of tribofilms during automotive braking, their structures were investigated and the essential features identified. Next, different ingredient combinations were studied by preparing some model materials with simpler compositions than real tribofilms. A test method was developed for verifying the tribological properties of the model materials and for comparison with results obtained with numerical sliding simulations of such structures. Prerequisites of good brake Performance properties were identified. Although the coefficient of friction could be varied in a wide ränge, smooth sliding conditions could only be achieved with values smaller than 0.4. Tests with artificial third body powders turned out to be useful as screening method for the selection of raw materials for brake pad formulations. T2 - EuroBrake 2014 CY - Lille, France DA - 13.05.2014 KW - Tribofilm KW - Third body KW - Pad ingredients KW - Ball milling KW - Pin-on-disc test PY - 2014 SN - 978-0-9572076-4-6 SP - 1 EP - 8 PB - FISITA CY - London AN - OPUS4-35039 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhao, F. A1 - Li, G. A1 - Österle, Werner A1 - Häusler, Ines A1 - Zhang, G. A1 - Wang, T. A1 - Wang, Q. T1 - Tribological investigations of glass fiber reinforced epoxy composites under oil lubrication conditions JF - Tribology International N2 - The tribological performance of short glass fibers (SGF),solid lubricants and silica nanoparticles filled epoxy (EP) composites was investigated under oil lubrication conditions. It is demonstrated that the addition of SGF greatly reduces the friction and wear of EP. However, further addition of solid lubricants and silica nanoparticles does not change obviously the friction and wear. It is identified that the high tribological performance of SGF reinforced EP is related to the high load carrying capacity and abrasion resistance of SGF. The nanostructure of the tribofilm was comprehensively characterized. It is deemed that the tribofilm plays an important role in the tribological performance by avoiding the direct rubbing of the sliding pairs exposed to boundary and mixed lubrication conditions. KW - Reinforced epoxy composites KW - Short glass fiber KW - Oil lubrication KW - Tribofilm PY - 2016 DO - https://doi.org/10.1016/j.triboint.2016.07.002 SN - 0301-679X VL - 103 SP - 208 EP - 217 PB - Elsevier Ltd. AN - OPUS4-38145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, G. A1 - Wetzel, B. A1 - Jim, B. A1 - Österle, Werner T1 - Impact of counterface topography on the formation mechanisms of nanostructured tribofilm of PEEK hybrid nanocomposites JF - Tribology International N2 - The effect of steel counterface topography on the formation mechanisms of nanostructured tribofilms of polyetheretherketone (PEEK) hybrid nanocomposites was studied. Three types of surface finishes with mean roughness Ra ranging from nano- to micro-scale were investigated. Tribo-sintering of nanopartides, oxidation of counterface steel and compaction of wear debris are identified to be competing factors dominating the formation and function of the tribofilms. Counterface topography played an important role on the competing factors, and thereby influenced significantly the final structure, the load-carrying capability and the lubrication performance of the tribofilms. It was disclosed that a thin tribofilm, which mainly consists of silica nanoparticles and which forms on the counterface with a submicron roughness, benefits best the tribological performance of the composites KW - Surface topography KW - Nanocomposite KW - Tribology KW - Tribofilm PY - 2015 DO - https://doi.org/10.1016/j.triboint.2014.11.015 SN - 0301-679X VL - 83 SP - 156 EP - 165 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-34612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, G. A1 - Häusler, Ines A1 - Österle, Werner A1 - Wetzel, B. A1 - Jim, B. T1 - Formation and function mechanisms of nanostructured tribofilms of epoxy-based hybrid nanocomposites JF - Wear N2 - The nanostructures and properties of the tribofilms of epoxy (EP) composites filled with short carbon fibers (SCF) and different volume fractions of monodisperse silica nanoparticles were investigated. When the conventional composite filled only with SCF was considered under a high pv condition, an iron oxide layer is formed on the steel counterface. The addition of even only 0.05 vol% nano-silica leads to a significant change of the tribofilm's structure and the tribological behavior of the composite. With increasing silica content, the oxidation layer on the steel surface is gradually replaced by a silica-based tribofilm. A close relationship between the tribofilms’ structure and the tribological behavior of the composites was identified. Mixing, possible reactions and tribo-sintering of silica nanoparticles with other wear products are deemed to be main mechanisms inducing the formation and the lubricity of the silica-based tribofilm. KW - Polymer-matrix composite KW - Sliding wear KW - Tribofilm KW - Nanoparticles KW - Tribo-sintering PY - 2015 DO - https://doi.org/10.1016/j.wear.2015.08.025 SN - 0043-1648 VL - 342-343 SP - 181 EP - 188 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Österle, Werner T1 - Sliding simulations with variable amounts of copper and graphite mixed with magnetite T2 - Proceedings EuroBrake 2016 N2 - Copper is one of the most important components in brake pads and its amount can reach up to 14%. In spite of a number of positive features copper usage in brake pad formulations has recently become the subject of considerable discussions, primarily due to concerns about potential risks related to environmental impacts of copper particles. So, for developing new pad formulations with possible replacements of copper content, it is very important to understand the functionality of copper additions to brake friction materials. In the paper theoretical investigation of the role of copper as a pad ingredient was carried out on the basis of modelling by the method of movable cellular automata (MCA). Our previous studies show that copper as a constituent of the tribofilm formed during braking provides smooth sliding by forming a granular layer of mechanically mixed materials from the friction layers. In the present study the concentration of copper particles in a Fe3O4-matrix was varied systematically in the range 5.5-28 vol. % and compared to mixtures with the same amount of graphite nanoparticles. The sliding simulations were performed while assuming material properties at 500°C in order to assess the beneficial role of copper during severe braking conditions corresponding to fading cycles during dynamometer testing. T2 - EuroBrake 2016 CY - Milano, Italy DA - 13.06.2016 KW - Movable cellular automata KW - Copper KW - Sliding simulation KW - Third body KW - Tribofilm PY - 2016 UR - www.eurobrake.net VL - EB2016-SVM-054 SP - 1 EP - 7 PB - FISITA AN - OPUS4-37938 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Nikonov, A.Y. A1 - Österle, Werner T1 - Multiscale modeling of low friction sliding behavior of a hybrid epoxy-matrix nanocomposite T2 - Procedia Structural Integrity N2 - The method of movable cellular automata (MCA) and method of molecular dynamics (MD) were applied to simulate the friction and sliding behavior of model-tribofilms formed from a nanocomposite consisting of an epoxy matrix, 10 vol % micron-sized carbon fibers and 5 vol. % silica nanoparticles. Whereas MCA considered the tribofilm as an agglomerate of silica nanoparticles released from the composite and mixed with graphite particles, MD simulated the sliding behavior of an amorphous silica layer supported by stiff crystalline substrates on both sides. The MCA model provided reasonable quantitative results which corroborate experimental findings at moderate stressing conditions. The very low coefficient of friction observed experimentally under severe stressing conditions was not explained by this model. This could be attributed to the lack of mechanical data at the high temperature expected under these conditions. Although based on a simpler assumption of the tribofilm composition, MD-modelling could be easily applied to the expected high flash temperature and was able to predict friction reduction and smooth sliding under these conditions. T2 - 21st European Conference on Fracture ECF21 CY - Catania, Italy DA - 20.06.2016 KW - Silica nanoparticle KW - Hybrid composite KW - Tribofilm KW - Molecular dynamics KW - Movable cellular automata PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-379402 DO - https://doi.org/10.1016/j.prostr.2016.06.294 VL - 2 SP - 2347 EP - 2354 PB - Elsevier Ltd. AN - OPUS4-37940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Kloß, Heinz A1 - Österle, Werner T1 - Final outcome of a fundamental research project on tribofilms formed during automotive braking, Part 2: Numerical simulation T2 - EuroBrake 2014 (Proceedings) N2 - In part 1 it was shown that tribofilms usually are 100 nm thick and exhibit a multiphase nanocrystalline structure. The objective of our modelling efforts was to obtain a better understanding of the sliding behaviour and associated friction properties and to study the impact of internal and external parameters on these properties. The method of movable cellular automata (MCA) was used. The third bodies were considered as aggregates of linked nanoparticles which may decompose and form a layer of granulär material, the so-called mechanically mixed layer (MML), if certain fracture criteria are fulfilled. The basic model structure which consists of Fe3Ü4 nanoparticles with 13 % graphite inclusions was used. In order to assess the robustness of the model the following parameter studies were performed. The pressure ränge at an asperity contact was varied between 15 and 50 MPa. The mechanical properties of the oxide were varied between brittle and ductile behaviour corresponding to room temperature and high temperature behaviour. The mechanical properties of the soft ingredient were varied + 50 % of the properties of graphite. The influence T2 - EuroBrake 2014 CY - Lille, France DA - 13.05.2014 KW - Tribofilm KW - Third body KW - Dry friction KW - Modelling KW - Movable cellular automata PY - 2014 SN - 978-0-9572076-4-6 SP - 1 EP - 9 PB - FISITA CY - London AN - OPUS4-35040 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Österle, Werner T1 - Modelling the sliding behaviour of tribofilms forming during automotive braking: impact of loading parameters and property range of constituents JF - Tribology Letters N2 - The impact of pressure, sliding velocity and property variation of constituents on the sliding behaviour of a model tribofilm was studied with the method of movable cellular automata (MCA). Whereas a clear pressure dependency of the coefficient of friction (COF) was always observed and could be correlated with the structure formation in terms of varying thickness of a mechanically mixed layer, the impact of the other parameters was either negligible or rather weak. Only if a brittle-to-ductile Transition of the oxide-based tribofilm was assumed, a significant decrease in the COF level was predicted. Temperature-dependent property changes can be neglected during MCA modelling, unless this transition takes place. For magnetite-based tribofilms, the transition temperature is beyond 800 °C, i.e. a temperature leading to fading effects during braking anyway. Thus, it could be concluded that, except for very severe braking conditions, sliding simulations with the MCA method yield meaningful results without considering temperature-dependent mechanical properties. KW - Tribofilm KW - Sliding behaviour KW - Friction KW - Movable cellular automata KW - Mechanically mixed layer PY - 2014 DO - https://doi.org/10.1007/s11249-013-0274-z SN - 1023-8883 SN - 1573-2711 VL - 53 IS - 1 SP - 337 EP - 351 PB - Springer AN - OPUS4-38548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Österle, Werner ED - Österle, Werner ED - Zhang, G. T1 - The role of solid lubricants for brake friction materials JF - Lubricants special issue "tribofilms and solid lubrication" N2 - This review article comprises of three parts. Firstly, reports of brake manufacturers on the beneficial impact of solid lubricants for pad formulations are surveyed. Secondly, since tribofilms were identified to play a crucial role in friction stabilization and wear reduction, the knowledge about tribofilm structures formed during automotive braking was reviewed comprehensively. Finally, a model for simulating the sliding behavior of tribofilms is suggested and a review on modelling efforts with different model structures related to real tribofilms will be presented. Although the variety of friction composites involved in commercial brake systems is very broad, striking similarities were observed in respect to tribofilm nanostructures. Thus a generalization of the tribofilm nanostructure is suggested and prerequisites for smooth sliding performance and minimal wear rates have been identified. A minimum of 13 vol.% of soft inclusions embedded in an iron oxide based tribofilm is crucial for obtaining the desired properties. As long as the solid lubricants or their reaction products are softer than magnetite, the main constituent of the tribofilm, the model predicts smooth sliding and a minimum of wear. KW - Solid lubricant KW - Friction KW - Automotive braking KW - Tribofilm KW - Sliding simulation KW - MCA-modeling PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-355973 UR - www.mdpi.com/journal/lubricants DO - https://doi.org/10.3390/lubricants4010005 SN - 2075-4442 VL - 4 IS - 1 SP - 5 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-35597 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -