TY - JOUR A1 - Österle, Werner A1 - Prietzel, Claudia A1 - Kloß, Heinz A1 - Dmitriev, Andrey T1 - On the role of copper in brake friction materials JF - Tribology International N2 - Copper is a major ingredient in friction materials used for automotive braking. The purpose of this study was to find out how copper contributes to good brake performance properties in addition to providing good thermal conductivity. Microstructural investigations of copper chips at the surfaces of brake pads revealed a zone of severe plastic deformation which provides high hardness, but there is also evidence of recrystallized copper nano-particles which are incorporated into friction layers as soft ingredient once detached from the pad surface. Thus copper seems to play a dual role, firstly as reinforcing element of the brake pad providing primary contact sites, and secondly as solid lubricant by contributing to the formation of a layer of granular material providing velocity accommodation between the rotating disc and fixed pad. Confirmation for this hypothesis was obtained by modelling contact sites on the nanometre scale with the method of movable cellular automata. Results show both, the similarity of steel fibres and copper macro-particles in respect to providing primary contact sites, as well as similar sliding behaviours of friction layers containing either copper or graphite as soft inclusions. Furthermore, it is shown that not only material properties, but also the concentration of solid lubricant particles in the friction layers, determine conditions for friction force stabilization and smooth sliding behaviour. KW - Friction material KW - Friction layer KW - Copper macro-particle KW - Copper nano-particle PY - 2010 DO - https://doi.org/10.1016/j.triboint.2010.08.005 SN - 0301-679X VL - 43 IS - 12 SP - 2317 EP - 2326 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-22342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Prietzel, Claudia A1 - Dmitriev, Andrey T1 - Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking JF - International journal of materials research N2 - The unique nanostructure formed during severe as well as moderate braking on the surface of brake discs was investigated by conventional and analytical Transmission Electron Microscopy. In both cases nanocrystalline magnetite mixed with carbon nanoinclusions and minor amounts of other pad constituents were identified. On the basis of these observations the friction performance of a single micro-contact was simulated with the method of Movable Cellular Automata. Inspite of a simplified nanostructure which was examined in two dimensions only, the calculated mean coefficient of friction fitted well to the value usually demanded for automotive braking. Furthermore, the model predicts that oxide films without soft nanoinclusions are not capable of providing smooth velocity accommodation at the pad–disc interface and thus lead to unstable friction behaviour. KW - Friction KW - Third body film KW - Nanostructure KW - MCA-model KW - EFTEM PY - 2010 SN - 1862-5282 VL - 101 IS - 5 SP - 669 EP - 675 PB - Carl Hanser CY - München AN - OPUS4-22343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Österle, Werner A1 - Bresch, Harald A1 - Dörfel, Ilona A1 - Fink, C. A1 - Giese, A. A1 - Prietzel, Claudia A1 - Seeger, Stefan A1 - Walter, J. T1 - Examination of airborne brake dust T2 - JEF 2010 - 6th European conference on braking (Proceedings) T2 - JEF 2010 - 6th European conference on braking CY - Lille, France DA - 2010-11-24 KW - Brake dust KW - Nanoparticles KW - Size-distribution PY - 2010 SP - 1 EP - 6(?) AN - OPUS4-22655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, Andrey A1 - Österle, Werner T1 - Modeling of brake pad-disc interface with emphasis to dynamics and deformation of structures JF - Tribology International N2 - The frictional behavior at local contacts in an automotive brake system was analysed on the basis of computer simulation by movable cellular automata method. The boundary conditions of the model were adjusted to experimental observations obtained by TEM. The model proved to be adequate for simulating mechanical mixing and velocity accommodation at the pad-disc interface. Dynamics of particle interaction were visualized by showing rotation angles and velocity vectors. The model provided information on the development of plastic deformation for metal-on-metal contacts and on crack formation at graphite lamellae of cast iron disc. Results are in agreement with conventional friction theories. KW - Nanotribology KW - Pad-disc interface KW - Simulation KW - Mechanically mixed layer PY - 2010 DO - https://doi.org/10.1016/j.triboint.2009.10.012 SN - 0301-679X VL - 43 IS - 4 SP - 719 EP - 727 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-20876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Nano-scale modeling of pad-disc interface. The influence of copper as a pad ingredient. T2 - JEF 2010 - 6th European conference on braking (Proceedings) T2 - JEF 2010 - 6th European conference on braking CY - Lille, France DA - 2010-11-24 KW - Friction layer KW - Copper particles KW - MCA-modelling PY - 2010 SP - 1 EP - 6(?) AN - OPUS4-22656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cristol, A.L. A1 - Desplanques, Y. A1 - Österle, Werner A1 - Degallaix, G. T1 - Coupling between thermal localisation and friction mechanisms: heat accumulation effect T2 - JEF 2010 - 6th European conference on braking (Proceedings) N2 - Heat accumulation induced by a succession of railway brakings leads to changes of the friction conditions occurring in pad-disc contact. Infrared thermography observations show a progressive increase of surface temperature over the succession, as well as a modification of the hot band migration phenomenon. From a tribological point of view, the heat accumulation, accompanied by a wear increase, progressively modifies the friction behaviour from one braking to the next. Post-mortem observations of pads are performed on surface by scanning electron microscopy and in depth after Focus Ion Beam cut by scanning ion microscopy. Observations show that, with heat accumulation, the third body quantity rises inside the contact, in accordance with wear increase. It is concluded that source flows of third body, which increase with temperature, feed aplenty the contact and modify its load-bearing capacity. T2 - JEF 2010 - 6th European conference on braking CY - Lille, France DA - 2010-11-24 KW - Successive braking KW - Heat accumulation KW - Thermal localisation KW - Wear KW - SEM KW - FIB PY - 2010 SP - 61 EP - 69 AN - OPUS4-22729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -