TY - JOUR A1 - Österle, Werner A1 - Urban, Ingrid A1 - Severin, D. A1 - Trepte, S. T1 - Correlations between surface modification and tribological performance of brake pads JF - Surface engineering N2 - The formation of a third body layer on a conventional friction material during braking tests was studied in some detail using TEM, SEM, and X-ray photoelectron spectroscopy (XPS) techniques. Plate shaped micro-contact areas representing a compositional mix of all components of the tribocouple and exhibiting a nanocry stalline microstructure were identified after a run-in period. PY - 2001 DO - https://doi.org/10.1179/026708401101517700 SN - 0267-0844 SN - 1743-2944 VL - 17 IS - 2 SP - 123 EP - 125 PB - Institute of Metals CY - London AN - OPUS4-2367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Urban, Ingrid T1 - Third body formation on brake pads and rotors JF - Tribology International N2 - The surfaces of a brake pad and rotor were investigated after a run-in period during which a stable coefficient of friction had developed. The Focused Ion Beam Technique (FIB) was used to reveal tribologically induced surface films and for cross-sectional preparation of superficial layers. Additional information was obtained by TEM/EDS of thin lamellae prepared with the FIB and by surface analytical methods (GDOS, XPS and RS). Microscopic contact areas of the pad showed bright contrast in Scanning Ion Microscopy (SIM). This was attributed to severe plastic deformation finally leading to a nanocrystalline microstructure. Metallic particles of the pad, the so-called primary contact areas, were mostly covered with a smooth oxide layer of less than 1 µm thickness. Above this layer a thin (100 nm) partly amorphous film was often observed. The film was not only restricted to the metal particles, but also spread over adjacent regions, suggesting that secondary plateaus had formed. Similar layers and films, although with slightly different composition and structure, were also observed at the surface of the rotor. KW - Friction material KW - Friction layer KW - Friction film KW - Third body KW - Brake PY - 2005 DO - https://doi.org/10.1016/j.triboint.2005.04.021 SN - 0301-679X VL - 39 IS - 5 SP - 401 EP - 408 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-12309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Urban, Ingrid T1 - Friction layers and friction films on PMC brake pads JF - Wear N2 - A rather new tool, the focused ion beam (FIB) technique, was used to characterise superficial layers at micro-contact areas of a commercial brake pad. The friction material was a polymer matrix composite (PMC) with approximately 50% metal content (semi-metallic) and the counter part was a cast iron rotor. Though the contact areas were not visible as topographic features, they could be identified with the aid of their increased secondary electron emission during FIB-scanning of the surface after tribological activation. Target preparation of micron-sized cross-sections with the FIB enabled the study of superficial layers at predetermined sites at high magnification. Depending on the constituent of the pad, one, two or three layers were identified. The three layer structure comprised: (i) a 100 nm thick friction film containing nanocrystalline metal oxides and an amorphous phase which was enriched with sulphur, (ii) a nanocrystalline friction layer of compacted wear debris accommodating surface roughness and (iii) a severely deformed layer if the supporting constituent was a metal particle. Though the majority of loose wear particles was iron oxide, the friction film which adhered tightly to the pad surface contained a large amount of copper and sulphur, whereas zinc was transferred to the cast iron rotor. KW - Brake KW - Friction film KW - Friction layer KW - Oxidational wear KW - FIB PY - 2004 DO - https://doi.org/10.1016/j.wear.2003.12.017 SN - 0043-1648 VL - 257 IS - 1-2 SP - 215 EP - 226 PB - Elsevier CY - Amsterdam AN - OPUS4-7645 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Rooch, Heidemarie A1 - Pyzalla, A. A1 - Wang, L. T1 - Investigation of white etching layers on rails by optical microscopy, electron microscopy, X-ray and synchrotron X-ray diffraction JF - Materials science and engineering A N2 - Patches of white etching layers on rail surfaces were investigated using sophisticated techniques like cross-sectional transmission electron microscopy (XTEM) and synchroton X-ray diffraction. Optical microscopy failed to resolve the microstructure, but in the TEM submicron grains with high dislocation densities and occasional twins, which are characteristic features of high carbon martensite, were observed. The martensitic structure was confirmed by evaluation of synchroton X-ray diffraction line profiles. The latter technique also allowed to determine dislocation densities of the order of 1012 cm-2 and residual compressive stresses of about 200 MPa. KW - Cross-sectional transmission electron microscopy KW - White etching layers KW - X-ray diffraction PY - 2001 DO - https://doi.org/10.1016/S0921-5093(00)01842-6 SN - 0921-5093 SN - 1873-4936 VL - 303 SP - 150 EP - 157 PB - Elsevier CY - Amsterdam AN - OPUS4-2370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Ressel, P. T1 - XTEM investigation of Ge/Pd shallow contact to p-IN0.53Ga0.47As JF - Materials science & engineering B N2 - Cross-sectional transmission electron microscopy, in combination with energy dispersive X-ray spectroscopy and focused beam microdiffraction, was applied to study the solid-state reactions taking place during contact formation of the system Ge(115 nm)/Pd(50 nm)—In0.53Ga0.47As. In order to get information about the sequence of the different processes, rapid thermal, annealing experiments in the range 225–400 °C were performed. The following features were observed: at 225 °C Pd reacted with the substrate forming the quaternary phase PdxIn0.53Ga0.47As (x ˜ 4), and with the Ge-layer forming mainly PdGe and Pd2Ge. Between PdxIn0.53Ga0.47As and In0.53Ga0.47As, a 5 nm thick amorphous Pd-In-Ga-As layer remained, indicating that the first reaction step was solid-state amorphization. After annealing at 350 °C, PdxIn0.53Ga0.47As disappeared and regrowth of In0.53Ga0.47As occured. Finally, at 400 °C, residual Ge from the amorphous top layer diffused to the interface and grew epitaxially on the regrown In0.53Ga0.47As, thus separating the III–V compound semiconductor from the Pd-Ge reaction products. The interface remained flat, while only about 10 nm of the active In0.53Ga0.47As layer had been modified during the annealing processes. PY - 1996 DO - https://doi.org/10.1016/0921-5107(96)01580-2 SN - 0921-5107 SN - 1873-4944 VL - 40 IS - 1 SP - 42 EP - 49 PB - Elsevier CY - Amsterdam AN - OPUS4-2513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Prietzel, Claudia A1 - Kloß, Heinz A1 - Dmitriev, Andrey T1 - On the role of copper in brake friction materials JF - Tribology International N2 - Copper is a major ingredient in friction materials used for automotive braking. The purpose of this study was to find out how copper contributes to good brake performance properties in addition to providing good thermal conductivity. Microstructural investigations of copper chips at the surfaces of brake pads revealed a zone of severe plastic deformation which provides high hardness, but there is also evidence of recrystallized copper nano-particles which are incorporated into friction layers as soft ingredient once detached from the pad surface. Thus copper seems to play a dual role, firstly as reinforcing element of the brake pad providing primary contact sites, and secondly as solid lubricant by contributing to the formation of a layer of granular material providing velocity accommodation between the rotating disc and fixed pad. Confirmation for this hypothesis was obtained by modelling contact sites on the nanometre scale with the method of movable cellular automata. Results show both, the similarity of steel fibres and copper macro-particles in respect to providing primary contact sites, as well as similar sliding behaviours of friction layers containing either copper or graphite as soft inclusions. Furthermore, it is shown that not only material properties, but also the concentration of solid lubricant particles in the friction layers, determine conditions for friction force stabilization and smooth sliding behaviour. KW - Friction material KW - Friction layer KW - Copper macro-particle KW - Copper nano-particle PY - 2010 DO - https://doi.org/10.1016/j.triboint.2010.08.005 SN - 0301-679X VL - 43 IS - 12 SP - 2317 EP - 2326 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-22342 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Prietzel, Claudia A1 - Dmitriev, Andrey T1 - Investigation of surface film nanostructure and assessment of its impact on friction force stabilization during automotive braking JF - International journal of materials research N2 - The unique nanostructure formed during severe as well as moderate braking on the surface of brake discs was investigated by conventional and analytical Transmission Electron Microscopy. In both cases nanocrystalline magnetite mixed with carbon nanoinclusions and minor amounts of other pad constituents were identified. On the basis of these observations the friction performance of a single micro-contact was simulated with the method of Movable Cellular Automata. Inspite of a simplified nanostructure which was examined in two dimensions only, the calculated mean coefficient of friction fitted well to the value usually demanded for automotive braking. Furthermore, the model predicts that oxide films without soft nanoinclusions are not capable of providing smooth velocity accommodation at the pad–disc interface and thus lead to unstable friction behaviour. KW - Friction KW - Third body film KW - Nanostructure KW - MCA-model KW - EFTEM PY - 2010 SN - 1862-5282 VL - 101 IS - 5 SP - 669 EP - 675 PB - Carl Hanser CY - München AN - OPUS4-22343 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Orts Gil, Guillermo A1 - Gross, Thomas A1 - Deutsch, Cornelius A1 - Hinrichs, R. A1 - Vasconcellos, M.A.Z. A1 - Zoz, H. A1 - Yigit, D. A1 - Sun, X. T1 - Impact of high energy ball milling on the nanostructure of magnetite-graphite and magnetite-graphite-molybdenum disulphide blends JF - Materials characterization N2 - Different, partly complementary and partly redundant characterization methods were applied to study the transition of magnetite, graphite and MoS2 powders to mechanically alloyed nanostructures. The applied methods were: Transmission electron microscopy (TEM), Mössbauer spectroscopy (MS), Raman spectroscopy (RS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The main objective was to prepare a model material providing the essential features of a typical tribofilm forming during automotive braking, and to assess the impact of different constituents on sliding behaviour and friction level. Irrespective of the initial grain size, the raw materials were transferred to a nanocrystalline structure and mixed on a nanoscopic scale during high energy ball milling. Whereas magnetite remained almost unchanged, graphite and molybdenum disulphide were transformed to a nanocrystalline and highly disordered structure. The observed increase of the coefficient of friction was attributed to a loss of lubricity of the latter ingredient due to this transformation and subsequent oxidation. KW - Ball milling KW - Mössbauer spectroscopy KW - Raman spectroscopy KW - Transmission electron microscopy KW - X-ray diffraction KW - X-ray photoelectron spectroscopy PY - 2013 DO - https://doi.org/10.1016/j.matchar.2013.09.007 SN - 1044-5803 SN - 1873-4189 VL - 86 SP - 28 EP - 38 PB - Elsevier Inc. CY - New York, NY AN - OPUS4-29697 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Nebauer, E. A1 - Hilsenbeck, J. A1 - Würfl, J. A1 - Klein, A. T1 - XTEM and TFXRD investigations of ohmic Ti/Al/Ti/Au/WSiN contacts on AlGaN/GaN HFET layer systems JF - Semiconductor science and technology N2 - The microstructural features of the high-temperature-stable ohmic contact system Ti/Al/Ti/Au/WSiN on AlGaN/GaN were investigated using analytical transmission electron microscopy and thin film x-ray diffraction. For two typical rapid thermal annealing steps at 750 °C (non-ohmic behaviour) and 850 °C (ohmic behaviour) the intermetallic phases at the metal-semiconductor interface are presented. Increased annealing leads to the transformation of an Al2Au-AlAuTi phase mixture to a mixture of Al2Au-Al3Au8 phases and the formation of Ti-Al-nitride layers at the interfaces. In light of these results the electrical contact properties are discussed. PY - 2002 DO - https://doi.org/10.1088/0268-1242/17/3/312 SN - 0268-1242 SN - 1361-6641 VL - 17 IS - 3 SP - 249 EP - 254 PB - IOP Publ. CY - Bristol AN - OPUS4-1380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Li, Pengxi A1 - Nolze, Gert T1 - Influence of surface finishing on residual stress depth profiles of a coarse-grained nickel-base superalloy JF - Materials science and engineering A N2 - Residual stress depth profiles of a cast nickel-base superalloy were measured by regarding the deflections occurring in plate-shaped specimens while successively removing layers from the machined or treated surface by electropolishing. The results are in good agreement with previous findings showing (i) the influence of grinding parameters on the width of so-called white layers, which correspond to steep gradients of residual tensile stress, and (ii) a broad zone of compressive residual stress in the case of shot peening. KW - Superalloy KW - Residual stress KW - Grinding KW - Shot peening PY - 1999 SN - 0921-5093 SN - 1873-4936 VL - 262 IS - 1-2 SP - 308 EP - 311 PB - Elsevier CY - Amsterdam AN - OPUS4-13977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Li, Pengxi T1 - Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates JF - Materials science and engineering A KW - Creep feed grinding KW - Subsurface zones KW - Temperature calculations KW - Local melting PY - 1997 SN - 0921-5093 SN - 1873-4936 VL - 238 SP - 357 EP - 366 PB - Elsevier CY - Amsterdam AN - OPUS4-2362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Krause, S. A1 - Moelders, Theodor A1 - Neidel, A. A1 - Oder, Gabriele A1 - Völker, J. T1 - Influence of heat treatment on microstructure and hot crack susceptibility of laser-drilled turbine blades made from René 80 JF - Materials characterization N2 - Turbine components from conventionally cast nickel-base alloy René 80 show different hot cracking susceptibilities depending on their heat treatment conditions leading to slightly different microstructures. Electron probe micro-analysis, focused ion beam technique and analytical transmission electron microscopy were applied to reveal and identify grain boundary precipitates and the γ–γ'-microstructure. The distribution of borides along grain boundaries was evaluated statistically by quantitative metallography. The following features could be correlated with an increase of cracking susceptibility: i) Increasing grain size, ii) increasing fraction of grain boundaries with densely spaced borides, iii) lack of secondary γ'-particles in matrix channels between the coarse cuboidal γ'-precipitates. The latter feature seems to be responsible for linking-up of cracked grain boundary precipitates which occurred as an additional cracking mechanism after one heat treatment, whereas decohesion at the boride-matrix-interface in the heat affected zone of laser-drilled holes was observed for both heat treatments. KW - Turbine blades KW - Nickel-base superalloy KW - Laser drilling KW - Hotcrack susceptibility KW - Grain boundary precipitates PY - 2008 DO - https://doi.org/10.1016/j.matchar.2008.01.021 SN - 1044-5803 SN - 1873-4189 VL - 59 IS - 11 SP - 1564 EP - 1571 PB - Elsevier CY - New York, NY AN - OPUS4-17932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Kloß, Heinz A1 - Urban, Ingrid A1 - Dmitriev, A.I. T1 - Towards a better understanding of brake friction materials JF - Wear N2 - This work focuses on surface changes induced by repeated brake applications and tries to provide explanations, how such material modifications might affect friction and wear properties of automotive disc brakes. Surface films were investigated locally by transmission electron microscopy (TEM) after having prepared thin cross-sections with a focused ion beam instrument (FIB). Since the observed friction layers revealed a nanocrystalline structure, modelling with the method of movable cellular automata (MCA) was performed by assuming an array of linked nanometer-sized particles. In spite of complicated material combinations at the pad surface, two very characteristic features were always observed at both the pad and disc surface, namely a steel constituent—either ferritic (pad) or pearlitic (disc), partly covered with patches of nanocrystalline iron oxide, on a zone of severe plastic deformation with fragmented grain structure. When using an automata size of 10 nm, reasonable values for the mean coefficient of friction (COF) were obtained, namely 0.35 and 0.85 for oxide-on-oxide and metal-on-metal contacts, respectively. Immediately after brake application mass-mixing and bond-breaking was observed within a narrow zone at both surfaces. KW - Brake pad KW - Brake disc KW - Composite material KW - Friction layer KW - Third body KW - MCA-modelling PY - 2007 DO - https://doi.org/10.1016/j.wear.2006.12.020 SN - 0043-1648 VL - 263 IS - 7-12 SP - 1189 EP - 1201 PB - Elsevier CY - Amsterdam AN - OPUS4-15735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Klaffke, Dieter A1 - Griepentrog, Michael A1 - Gross, U. A1 - Kranz, I. A1 - Knabe, Ch. T1 - Potential of wear resistant coatings on Ti-6Al-4V for artificial hip joint bearing surfaces JF - Wear N2 - Tribological screening tests (simple, reciprocating ball-on-flat tests) were performed with the objective to identify an appropriate coating for the articulating surfaces of artificial hip joints whose acetabular cups and femoral stems are made from Ti–6Al–4V alloy, which is appreciated for its light weight, good biocompatibility and elastic properties similar to those of natural bone. Standard coatings like TiN or CrN performed better than more complicated multi-layer systems, though not as good as different types of amorphous carbon coatings, generally referred to as diamond-like carbon or DLC coatings. Among the latter, hydrogenated amorphous carbon (a-C:H) displayed the best properties, especially if the hydrogen content was increased by reducing the bias voltage during PA-CVD-deposition. The optimised a-C:H coating revealed the most promising wear behaviour under the applied testing conditions, i.e. the increase of linear wear with the number of cycles was close to zero. Regarding the materials examined in this study, correlation of wear with mechanical properties obtained by nano-indentation revealed that high hardness was not an adequate criterion for selecting appropriate coatings. A high ratio of hardness and elastic modulus (H/E) proved to be more important. Microstructural and micro-analytical investigations revealed transformation of TiN and CrN to TiO2 and Cr2O3, respectively, and amorphous carbon was, at least partly, transformed to graphite. Furthermore, incorporation of Al2O3 from the ball was observed at a very fine scale. The wear debris of favourable coatings always formed agglomerates of nano-scale particles. It was shown that commercial nano-particles of Al2O3, Cr2O3 and carbon black are comparable to particles generated by the tribological tests. However, it is uncertain whether they are comparable to those formed during simulator studies or in vivo. Furthermore, the performance of the favourable coating has to be tested in a hip joint simulator before its potential for application in prostheses can be assessed. KW - Coating KW - Implant KW - Titanium alloy KW - DLC KW - Wear debris KW - Nano-particles PY - 2008 DO - https://doi.org/10.1016/j.wear.2007.04.001 SN - 0043-1648 VL - 264 IS - 7-8 SP - 505 EP - 517 PB - Elsevier CY - Amsterdam AN - OPUS4-16711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Griepentrog, Michael A1 - Klaffke, Dieter T1 - Microstructural characterization of wear particles formed during tribological stressing of TiC and Ti(C,N) coatings JF - Tribology letters N2 - An attempt was undertaken to obtain a better understanding of the tribological properties of two wear-resistant coatings on tool steel by structural and microchemical analysis of wear particles using a transmission electron microscope. Coatings were deposited by physical vapor deposition and plasma-assisted chemical vapor deposition techniques and tribological properties were derived from reciprocating sliding tests of the coatings against alumina balls. Three types of wear particles were identified by electron diffraction and energy dispersive X-ray spectroscopy: nanocrystalline rutile (TiO2), nanocrystalline graphite and microcrystalline graphite. Low coefficients of friction, of the order of 0.2, were attributed to the formation of solid lubricant films of sub-stoichiometric TiO2-x Magnéli phases and/or graphite. KW - Third body KW - Solid lubrication KW - Coating, debris KW - Wear particle KW - TEM PY - 2002 DO - https://doi.org/10.1023/A:1015491027710 SN - 1023-8883 SN - 1573-2711 VL - 12 IS - 4 SP - 229 EP - 234 PB - Springer Science Business Media B.V. CY - Dordrecht AN - OPUS4-1379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Griepentrog, Michael A1 - Gross, Thomas A1 - Urban, Ingrid T1 - Chemical and microstructural changes induced by friction and wear of brakes JF - Wear N2 - The chemical and microstructural changes occurring during braking simulation tests at the surface of a conventional brake pad material were investigated mainly by scanning and transmission electron microscopy and surface analytical techniques. It can be shown that patches of a third body material develop, comprising a compositional mix of all constituents of the pad and iron oxides from the disk. Milled debris particles still have the crystal structure of barite, the major phase of the pad material, but the grain size is reduced drastically to the nanometer scale. The major wear mechanism is delamination of filler particles from the organic binder, supported by local degradation of the phenolic resin during asperity heating. Quartz crystals are preserved thereby adopting the function of primary contact areas. KW - Brake KW - Third body material KW - Friction layer KW - Electron microscopy PY - 2001 DO - https://doi.org/10.1016/S0043-1648(01)00785-2 SN - 0043-1648 VL - 251 SP - 1469 EP - 1476 PB - Elsevier CY - Amsterdam AN - OPUS4-2371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Giovannozzi, A. A1 - Gradt, Thomas A1 - Häusler, Ines A1 - Rossi, A. A1 - Wetzel, B. A1 - Zhang, G. A1 - Dmitriev, A.I. T1 - Exploring the potential of Raman spectroscopy for the identification of silicone oil residue and wear scar characterization for the assessment of tribofilm functionality JF - Tribology International N2 - We applied a combination of Raman spectroscopy (RS) and cross-sectional transmission electron microscopy (X-TEM) to identify silicone oil residues and tribofilms at steel disc surfaces after tribological testing. Neither chemical cleaning nor mechanical removal of a 50 µm thick surface layer produced a surface without any silicone residue. Nevertheless, long-term tribological properties are not affected due to silicone degradation which has been proved by Raman spectroscopy. Excellent anti-wear and anti-friction properties of a nanocomposite at severe stressing conditions correlated with the formation of a silica-based tribofilm containing amorphous and graphite-like carbon nanoparticles. Since reliable carbon quantification by analytical TEM is difficult, RS is a useful complementary method for carbon identification at wear scars. KW - Raman spectroscopy KW - Cross-sectional TEM KW - Silicone oil residue KW - Tribofilm PY - 2015 DO - https://doi.org/10.1016/j.triboint.2015.04.046 SN - 0301-679X VL - 90 SP - 481 EP - 490 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-33421 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dörfel, Ilona A1 - Wollenschläger, Nicole A1 - Gradt, Thomas A1 - Wolter, Christian A1 - Reinstädt, Philipp A1 - Zeigmeister, U. A1 - Dmitriev, A. I. A1 - Nikonov, A. Y. T1 - Potential of different nickel coatings for optimizing the sliding behavior of electrical connectors JF - Tribology International N2 - The potential of several nickel coatings was investigated by reciprocating sliding tests against copper thus simulating the plug-socket system of an electrical connector. KW - Electrical connectors KW - Electro-plated nickel coatings KW - Electroless Ni-P KW - Cold-welding KW - Tribooxidation PY - 2018 DO - https://doi.org/10.1016/j.triboint.2018.01.006 SN - 0301-679X SN - 1879-2464 VL - 120 SP - 491 EP - 501 PB - Elsevier Ltd. AN - OPUS4-44468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dörfel, Ilona A1 - Urban, Ingrid A1 - Reier, T. A1 - Schultze, J. T1 - XPS and XTEM study of AlN formation by N+2 implantation of aluminium JF - Surface and coatings technology N2 - X-ray photoelectron spectroscopy (XPS) and cross-sectional transmission electron microscopy (XTEM) were used to study the formation of AlN films by N+2 ion implantation of aluminium at energies of 3 keV and 100 keV. In both cases, a two-stage mechanism was found, comprising first the oriented precipitation of small particles of the hexagonal AlN-phase, followed by growth and coalescence finally forming a continuous AlN-layer while increasing the implantation dose from 1×1017 cm-2 to 2×1017 cm-2. The results of both methods are in excellent agreement and furthermore provide complementary information concerning chemical composition and binding energies as well as microstructural details. KW - AIN KW - Aluminium KW - N2+ KW - Implantation KW - XPS KW - XTEM PY - 1998 DO - https://doi.org/10.1016/S0257-8972(98)00355-7 SN - 0257-8972 VL - 102 IS - 1-2 SP - 168 EP - 174 PB - Elsevier Science CY - Lausanne AN - OPUS4-2363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dörfel, Ilona A1 - Prietzel, Claudia A1 - Rooch, Heidemarie A1 - Cristol-Bulthé, A.-L. A1 - Defallaix, G. A1 - Desplanques, Y. T1 - A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-on-disc test JF - Wear KW - Brake KW - Third body KW - Wear KW - Friction KW - Nano-scale KW - TEM PY - 2009 DO - https://doi.org/10.1016/j.wear.2008.11.023 SN - 0043-1648 VL - 267 IS - 5-8 SP - 781 EP - 788 PB - Elsevier CY - Amsterdam AN - OPUS4-19450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dörfel, Ilona A1 - Gesatzke, Wolfgang A1 - Rooch, Heidemarie A1 - Urban, Ingrid T1 - Charakterisierung tribologischer Kontakte mit FIB und TEM JF - Praktische Metallographie = Practical metallography KW - FIB KW - TEM KW - Verbundwerkstoff KW - Bremse KW - Diamantschicht PY - 2004 SN - 0032-678X N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 41 IS - 4 SP - 166 EP - 179 PB - Hanser CY - München AN - OPUS4-3496 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Österle, Werner A1 - Dmitriev, Andrey A1 - Kloß, Heinz T1 - Assessment of sliding friction of a nanostructured solid lubricant film by numerical simulation with the method of movable cellular automata (MCA) T2 - WTC 2013 - 5th World tribology congress N2 - Tribofilms formed during dry sliding usually exhibit a nanocrystalline structure and complicated composition. In the present study, tribofilms consisting mainly of a solid lubricant, namely graphite nanoparticles, are considered. Systems providing such tribofilms are candidates for anti-friction applications. Since sliding action always leads to mixing of the materials at both sides of the tribological interface, it was of major interest to study the impact of different amounts of a hard constituent, SiC in the considered case, within the soft matrix systematically. Furthermore, the impact of normal pressure was considered. A mechanically mixed layer was observed for the whole range of normal pressures and SiC volume fractions. The calculated coefficient of friction decreased significantly with increasing thickness of this layer but was only marginally affected by SiC volume fraction, which is good news for anti-friction applications. T2 - WTC 2013 - 5th World tribology congress CY - Torino, Italy DA - 08.09.2013 KW - Friction KW - Third body film KW - Numerical simulation KW - Nanostructure PY - 2013 SP - 1 EP - 4 AN - OPUS4-29659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, Andrey T1 - Functionality of conventional brake friction materials - Perceptions from findings observed at different length scales JF - Wear N2 - Automotive braking is based on dry friction between fixed pads and a rotating disc. Besides macroscopic thermo-physical properties, the development of topographic features on the mesoscopic scale and the nanostructure of the third body formed by wear processes, determine brake performance properties. Whereas modelling on the atomistic scale is suitable to understand mechanisms leading to nanocrystalline surface films, the properties of such films can be assessed best with a model based on movable cellular automata (MCA). It turned out that the presence of at least 10% of soft nanoinclusions is most essential in respect to smooth sliding conditions. It made no major difference whether graphite or copper particles were assumed as soft nanoinclusions. The third body material is not only the stuff which spreads over contact areas, but it also contributes to contact size by wear particle compaction and formation of secondary contact areas. The evolution of contact size is the major feature of mesoscopic modelling and thus it is capable to model and explain dynamic changes of the coefficient of friction (COF) during certain brake operations. Although it is still ambiguous in many cases which feature has the major impact on friction behaviour, the following conclusions can be drawn. The reinforcing ingredients of the pad material serve as primary contact sites and thus define the starting condition for mesoscopic simulations. A certain amount of wear is necessary to provide a third body which is capable to form secondary contact sites and friction layers screening the first body materials. The composition and nanostructure of the third body is important as well, because it determines the friction level and is responsible for smooth sliding conditions. KW - Nanostructure KW - Microstructure KW - Mesostructure KW - Macrostructure KW - Modelling KW - Simulation PY - 2011 DO - https://doi.org/10.1016/j.wear.2010.11.035 SN - 0043-1648 VL - 271 IS - 9-10 SP - 2198 EP - 2207 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-24177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Orts Gil, Guillermo A1 - Schneider, Thomas A1 - Ren, H. A1 - Sun, X. T1 - Verification of nanometre-scale modelling of tribofilm sliding behaviour JF - Tribology International N2 - A model based on movable cellular automata has been applied to study the sliding behaviour of tribofilms formed during automotive braking. Since it is not possible yet to determine the composition of real tribofilms quantitatively, final verification of modelling results is needed. This was done by preparing artificial third bodies with compositions and nanostructures matching the ones assumed for modelling. Pin-on-disc tests were performed while applying the artificial third bodies to the contact. The results revealed that not only the structure of the third body but also the amount of the applied normal pressure determines the COF obtained by modelling and that much better correlation between experimental and modelling results was obtained while assuming high normal pressures at asperity contacts. KW - Automotive braking KW - Third body KW - Modelling KW - Sliding simulation PY - 2013 DO - https://doi.org/10.1016/j.triboint.2013.02.018 SN - 0301-679X VL - 62 SP - 155 EP - 162 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-27946 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Kloß, Heinz T1 - Does ultra-mild wear play any role for dry friction applications, such as automotive braking? JF - Faraday discussions N2 - Nanostructured third body films and/or storage of wear debris at the surfaces of the first bodies are deemed as prerequisites of sliding under ultra-mild wear conditions. Since such features have been observed experimentally on brake pads and discs, attempts were undertaken to study their sliding behaviour by modelling on the nanoscopic scale with an approach based on Movable Cellular Automata (MCA). The model rendered the possibility to study the influence of different nanostructures systematically and to assess the impact of different brake pad ingredients on the sliding behaviour, velocity accommodation and friction force stabilization at a sliding contact. Besides providing a review on previously published modelling results, some additional new graphs enabling better visualization of dynamic processes are presented. Although ultra-mild wear conditions were considered to be essential for achieving the desired tribological properties, transitions to mesoscopic and macroscopic wear mechanisms were studied as well. The final conclusion is that ultra-mild wear and corresponding smooth sliding behaviour play an important role during automotive braking, even though temporarily and locally events of severe wear may cause friction instabilities, surface damage and release of coarse wear particles. KW - Dry friction KW - Ultra-mild wear KW - Third body KW - MCA-model KW - Simulation PY - 2012 DO - https://doi.org/10.1039/c2fd00117a SN - 1359-6640 SN - 1364-5498 VL - 156 IS - 0 SP - 159 EP - 171 PB - Soc. CY - Cambridge [u.a.] AN - OPUS4-26822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Kloß, Heinz T1 - Possible impacts of third body nanostructure on friction performance during dry sliding determined by computer simulation based on the method of movable cellular automata JF - Tribology International N2 - The tribological properties of nanostructured surface films formed during dry sliding, for example during automotive braking, were determined by modelling using the method of movable cellular automata. Starting from a basic model structure, consisting of magnetite with 13% graphite inclusions, the impact of additional soft and hard particles of different size and volume fraction was studied systematically. It was revealed that agglomerates of soft particles decomposed and finally mixed with the oxide in the same way as single nanoparticles. On the other hand, agglomerates of hard particles mixed with the other components without decomposing. Whereas increasing the amount of soft components in the third body lowered the coefficient of friction, the opposite occurred with the hard particles. The boundary conditions for obtaining smooth sliding conditions with minor fluctuations between friction forces at successive time steps could be defined. In addition to features of the nanostructure, the applied normal pressure impacted modelling results. Within the parameter range of smooth sliding behaviour, increasing pressure induced thicker granular interface layers, which lead to a slight decrease of the coefficient of friction. Changing the amount of soft or hard particles did not change this pressure dependency but only the friction level. KW - MCA-modelling KW - Third body KW - Nanoparticles KW - Dry friction PY - 2012 DO - https://doi.org/10.1016/j.triboint.2011.11.018 SN - 0301-679X VL - 48 SP - 128 EP - 136 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-25469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A.I. A1 - Gradt, Thomas A1 - Häusler, Ines A1 - Hammouri, Basem A1 - Morales Guzman, Pablo Israel A1 - Wetzel, B. A1 - Yigit, D. A1 - Zhang, G. T1 - Exploring the beneficial role of tribofilms formed from an epoxy-based hybrid nanocomposite JF - Tribology International N2 - The composition and nanostructure of a beneficial tribofilm formed during sliding of a hybrid nanocomposite against steel were characterized comprehensively. A similar nanostructure was produced by high energy ball milling of the three identified tribofilm constituents: silica, hematite and graphite. By supplying powders to a pin-on-disc test it has been shown that neither silica, nor hematite, nor a mixture of both provide the low coefficient of friction (COF) observed for the hybrid composite. Only if graphite was blended with the oxides, the low COF was obtained. Thus, a film of finely dispersed stable inorganic wear products containing 15 vol% graphite provides low friction and wear in the considered case. KW - TEM KW - Nanocomposite KW - Tribofilm KW - Ball milling KW - Pin-on-disc test PY - 2015 DO - https://doi.org/10.1016/j.triboint.2015.03.006 SN - 0301-679X VL - 88 SP - 126 EP - 134 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-33035 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Dmitriev, A. I. A1 - Wetzel, B. A1 - Zhang, G. A1 - Häusler, Ines A1 - Jim, B.C. T1 - The role of carbon fibers and silica nanoparticles on friction and wear reduction of an advanced polymer matrix composite JF - Materials and design N2 - Excellent tribological properties of an advanced polymer matrix composite were obtained by a combination of micro- and nano-sized fillers. Surface features and the nanostructure of tribofilms were characterized by advanced microscopic techniques, and correlated with the macroscopic behavior in terms of wear rate and friction evolution. A model based on movable cellular automata was applied for obtaining a better understanding of the sliding behavior of the nanostructured tribofilms. The failure of the conventional composite without silica nanoparticles could be attributed to severe oxidational wear after degradation of an initially formed polymer transfer film. The hybrid composite preserves its antiwear and antifriction properties because flash temperatures at micron-sized carbon fibers, lead to polymer degradation and subsequent release of nanoparticles. It has been shown that the released particles are mixed with other wear products and form stable films at the disc surface thus preventing further severe oxidational wear. Furthermore, the released wear product also is embedding carbon fibers at the composite surface thus preventing fiber fragmentation and subsequent third body abrasion. With nanoscale modelling we were able to show that low friction and wear can be expected if the nanostructured silica films contain at least 10 vol.% of a soft ingredient. KW - Carbon fibers KW - Silica nanoparticles KW - Hybrid composite KW - Tribological properties KW - Tribofilm KW - Sliding simulation PY - 2016 DO - https://doi.org/10.1016/j.matdes.2015.12.175 SN - 0264-1275 VL - 93 SP - 474 EP - 484 PB - Elsevier AN - OPUS4-35598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Djahanbakhsh, Mohammad A1 - Hartelt, Manfred A1 - Wäsche, Rolf T1 - Reasons for inferior performance of ceramic on a-C:H-coated Ti-6Al-4V in hip simulator testing compared to ball on flat reciprocating sliding tests JF - Wear N2 - The tribological performance of a hydrogenated amorphous carbon coating on Ti–6Al–4V against ceramic balls was checked by simple reciprocating sliding tests and by more complicated tests in a hip joint simulator. 3 of 4 joints failed during hip simulator testing already after approximately 100 × 10³ cycles and possibly due to coating failures caused by insufficient polishing of the metallic acetabular cups prior to coating deposition. Since such failures occurred only occasionally, the problem was not revealed by reciprocating sliding tests which are stressing a much smaller surface area compared to the tests in the hip joint simulator. Another type of failure, pits of 1–2 µm in diameter distributed randomly at the coating surface, was frequently observed by Scanning Electron Microscopy and analyzed comprehensively by Focused Ion Beam technique in combination with Transmission Electron Microscopy in one case. Although not necessarily affecting wear, such small failures might cause long-term problems in vivo, by providing access of body fluid to the substrate–coating interface making it susceptible to corrosion. KW - Hip simulator KW - Reciprocating sliding test KW - A-C:H KW - Coating failure KW - Artificial hip joint PY - 2008 DO - https://doi.org/10.1016/j.wear.2008.04.008 SN - 0043-1648 VL - 265 IS - 11-12 SP - 1727 EP - 1733 PB - Elsevier CY - Amsterdam AN - OPUS4-18439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Deutsch, Cornelius A1 - Gradt, Thomas A1 - Orts Gil, Guillermo A1 - Schneider, Thomas A1 - Dmitriev, A.I. T1 - Tribological screening tests for the selection of raw materials for automotive brake pad formulations JF - Tribology International N2 - A modified pin-on-disc test was applied to determine tribological properties of typical brake pad constituents. Ball-milling of these ingredients together with iron oxide and graphite provided model materials displaying the main features of real third bodies. Solid lubricants like graphite affected the friction and wear behaviour of Fe3O4 powders considerably whereas further addition of hard nanoparticles induced only minor effects. This was corroborated by comparison with modelling results. MoS2 played a dual role. Depending on special conditions, this ingredient either reduced or increased friction. The latter could be explained, after nanoscopic characterization, by oxidation and destruction of the wear-protecting tribofilm. KW - Brake pad formulation KW - Raw materials KW - Third body KW - Pin-on-disc test PY - 2014 DO - https://doi.org/10.1016/j.triboint.2014.01.017 SN - 0301-679X VL - 73 SP - 148 EP - 155 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-30221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Blümel, G. A1 - Wever, H. T1 - Die Walztextur von hochreinem Eisen JF - Materialprüfung = Materials testing PY - 1977 SN - 0025-5300 VL - 19 IS - 8 SP - 347 EP - 350 PB - Carl Hanser Verlag CY - München AN - OPUS4-2386 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Bettge, Dirk A1 - Fedelich, Bernard A1 - Klingelhöffer, Hellmuth T1 - Modelling the orientation and direction dependence of the critical resolved shear stress of nickel-base superalloy single crystals JF - Acta materialia PY - 2000 SN - 1359-6454 SN - 1873-2453 VL - 48 SP - 689 EP - 700 PB - Elsevier Science CY - Kidlington AN - OPUS4-2366 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner A1 - Bettge, Dirk T1 - Vergleich von Methoden zur Charakterisierung von Bremsbelag-Oberflächen / A Comparison of Methods for Characterizing Brake Lining Surfaces JF - Praktische Metallographie = Practical metallography PY - 2004 SN - 0032-678X N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 41 IS - 10 SP - 494 EP - 505 PB - Hanser CY - München AN - OPUS4-7644 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner T1 - Gefüge und Festigkeit metallischer Werkstoffe JF - Die Naturwissenschaften PY - 1987 SN - 0028-1042 SN - 1432-1904 VL - 77 SP - 317 EP - 325 PB - Springer CY - Berlin AN - OPUS4-2454 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner T1 - Zur Problematik der elektronenmikroskopischen Ermittlung der Versetzungsdichte in kaltverformten kohlenstoffarmen Stählen JF - Praktische Metallographie = Practical metallography PY - 1992 SN - 0032-678X VL - 29 SP - 400 EP - 413 PB - Hanser CY - München AN - OPUS4-2474 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner T1 - Bohrer für den Nanometerbereich - Mikrobearbeitung und Gefügedarstellung mit der Technik des fokussierten Ionenstrahls (FIB) JF - Materialprüfung = Materials testing KW - FIB KW - Mikrobearbeitung KW - TEM KW - Nanotechnologie PY - 2004 DO - https://doi.org/10.3139/120.100573 SN - 0025-5300 VL - 46 IS - 3 SP - 113 EP - 117 PB - Carl Hanser Verlag CY - München AN - OPUS4-3495 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Österle, Werner T1 - Berechnung des Streckgrenzenbeitrags plättchenförmiger Teilchen auf der Grundlage einer quantitativen Gefügeanalyse mit dem TEM JF - Praktische Metallographie = Practical metallography PY - 1984 SN - 0032-678X VL - 21 SP - 377 EP - 389 PB - Hanser CY - München AN - OPUS4-2395 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhao, F. A1 - Li, G. A1 - Österle, Werner A1 - Häusler, Ines A1 - Zhang, G. A1 - Wang, T. A1 - Wang, Q. T1 - Tribological investigations of glass fiber reinforced epoxy composites under oil lubrication conditions JF - Tribology International N2 - The tribological performance of short glass fibers (SGF),solid lubricants and silica nanoparticles filled epoxy (EP) composites was investigated under oil lubrication conditions. It is demonstrated that the addition of SGF greatly reduces the friction and wear of EP. However, further addition of solid lubricants and silica nanoparticles does not change obviously the friction and wear. It is identified that the high tribological performance of SGF reinforced EP is related to the high load carrying capacity and abrasion resistance of SGF. The nanostructure of the tribofilm was comprehensively characterized. It is deemed that the tribofilm plays an important role in the tribological performance by avoiding the direct rubbing of the sliding pairs exposed to boundary and mixed lubrication conditions. KW - Reinforced epoxy composites KW - Short glass fiber KW - Oil lubrication KW - Tribofilm PY - 2016 DO - https://doi.org/10.1016/j.triboint.2016.07.002 SN - 0301-679X VL - 103 SP - 208 EP - 217 PB - Elsevier Ltd. AN - OPUS4-38145 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, G. A1 - Österle, Werner A1 - Jim, B. A1 - Häusler, Ines A1 - Hesse, Rene A1 - Wetzel, B. T1 - The role of surface topography in the evolving microstructure and functionality of tribofilms of an epoxy-based nanocomposite JF - Wear N2 - The topographic effect of steel counterface, finished by mechanical grinding with Ra ranging from 0.01 to 0.95 µm, on the structure and functionality of the tribofilm of a hybrid nanocomposite, i.e. epoxy matrix filled with monodisperse silica nanoparticles, carbon fibers and graphite, was systematically investigated. The nanostructure of the tribofilm was comprehensively characterized by using combined focused ion beam and transmission electron microscope analyses. It was identified that oxidation of the steel surface, release, compaction and tribosintering of silica nanoparticles and deposition of an epoxy-like degradation product as well as fragmentation of carbon fibers are main mechanisms determining the structure and functionality of the tribofilm. The size of roughness grooves determines the type and size class of wear particles to be trapped at the surface. An optimum groove size leading to a maximum of surface coverage with a nanostructured tribofilm formed mainly from released silica nanoparticles was identified. KW - hybrid nanocomposite KW - tribological performance KW - topographic effect KW - tribofilm KW - nanostructure PY - 2016 DO - https://doi.org/10.1016/j.wear.2016.06.012 VL - 364-365 SP - 48 EP - 56 PB - Elsevier B.V. AN - OPUS4-37937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, G. A1 - Wetzel, B. A1 - Jim, B. A1 - Österle, Werner T1 - Impact of counterface topography on the formation mechanisms of nanostructured tribofilm of PEEK hybrid nanocomposites JF - Tribology International N2 - The effect of steel counterface topography on the formation mechanisms of nanostructured tribofilms of polyetheretherketone (PEEK) hybrid nanocomposites was studied. Three types of surface finishes with mean roughness Ra ranging from nano- to micro-scale were investigated. Tribo-sintering of nanopartides, oxidation of counterface steel and compaction of wear debris are identified to be competing factors dominating the formation and function of the tribofilms. Counterface topography played an important role on the competing factors, and thereby influenced significantly the final structure, the load-carrying capability and the lubrication performance of the tribofilms. It was disclosed that a thin tribofilm, which mainly consists of silica nanoparticles and which forms on the counterface with a submicron roughness, benefits best the tribological performance of the composites KW - Surface topography KW - Nanocomposite KW - Tribology KW - Tribofilm PY - 2015 DO - https://doi.org/10.1016/j.triboint.2014.11.015 SN - 0301-679X VL - 83 SP - 156 EP - 165 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-34612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, G. A1 - Häusler, Ines A1 - Österle, Werner A1 - Wetzel, B. A1 - Jim, B. T1 - Formation and function mechanisms of nanostructured tribofilms of epoxy-based hybrid nanocomposites JF - Wear N2 - The nanostructures and properties of the tribofilms of epoxy (EP) composites filled with short carbon fibers (SCF) and different volume fractions of monodisperse silica nanoparticles were investigated. When the conventional composite filled only with SCF was considered under a high pv condition, an iron oxide layer is formed on the steel counterface. The addition of even only 0.05 vol% nano-silica leads to a significant change of the tribofilm's structure and the tribological behavior of the composite. With increasing silica content, the oxidation layer on the steel surface is gradually replaced by a silica-based tribofilm. A close relationship between the tribofilms’ structure and the tribological behavior of the composites was identified. Mixing, possible reactions and tribo-sintering of silica nanoparticles with other wear products are deemed to be main mechanisms inducing the formation and the lubricity of the silica-based tribofilm. KW - Polymer-matrix composite KW - Sliding wear KW - Tribofilm KW - Nanoparticles KW - Tribo-sintering PY - 2015 DO - https://doi.org/10.1016/j.wear.2015.08.025 SN - 0043-1648 VL - 342-343 SP - 181 EP - 188 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-34442 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yilmaz, M. A1 - Wollschläger, Nicole A1 - Esfahani, M. N. A1 - Österle, Werner A1 - Leblebici, Y. A1 - Alaca, B. E. T1 - Superplastic behavior of silica nanowires obtained by direct patterning of silsesquioxane-based precursors JF - Nanotechnology N2 - Silica nanowires spanning 10 μm-deep trenches are fabricated from different types of silsesquioxane-based precursors by direct e-beam patterning on silicon followed by release through deep reactive ion etching. Nanowire aspect ratios as large as 150 are achieved with a critical dimension of about 50 nm and nearly rectangular cross-sections. In situ bending tests are carried out inside a scanning electron microscope, where the etch depth of 10 mm provides sufficient space for deformation. Silica NWs are indeed observed to exhibit superplastic behavior without fracture with deflections reaching the full etch depth, about two orders of magnitude larger than the nanowire thickness. A large-deformation elastic bending model is utilized for predicting the deviation from the elastic behavior. The results of forty different tests indicate a critical stress level of 0.1–0.4 GPa for the onset of plasticity. The study hints at the possibility of fabricating silica nanowires in a monolithic Fashion through direct e-beam patterning of silsesquioxane-based resins. The fabrication technology is compatible with semiconductor manufacturing and provides silica nanowires with a very good structural integrity. KW - Silica nanowires KW - HSQ KW - Superplasticity KW - In situ bending tests PY - 2017 DO - https://doi.org/10.1088/1361-6528/aa5b80 SN - 0957-4484 SN - 1361-6528 VL - 28 IS - 11 SP - Article 115302, 1 EP - 10 AN - OPUS4-39166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yilmaz, M. A1 - Kilinc, Y. A1 - Nadar, G. A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Österle, Werner A1 - Leblebici, Y. A1 - Alaca, B. E. T1 - Top-down technique for scaling to nano in silicon MEMS JF - Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena N2 - Nanoscale building blocks impart added functionalities to microelectromechanical systems (MEMS). The integration of silicon nanowires with MEMS-based sensors leading to miniaturization with improved sensitivity and higher noise immunity is one example highlighting the advantages of this multiscale approach. The accelerated pace of research in this area gives rise to an urgent need for batch-compatible solutions for scaling to nano. To address this challenge, a monolithic fabrication approach of silicon nanowires with 10-lm-thick silicon-on-insulator (SOI) MEMS is developed in this work. A two-step Si etching approach is adopted, where the first step creates a shallow surface protrusion and the second step releases it in the form of a nanowire. It is during this second deep etching step that MEMS—with at least a 2-order-of-magnitude scale difference - is formed as well. The technique provides a pathway for preserving the lithographic resolution and transforming it into a very high mechanical precision in the assembly of micro- and nanoscales with an extreme topography. Validation of the success of integration is carried out via in situ actuation of MEMS inside an electron microscope loading the nanowire up to its fracture. The technique yields nanowires on the top surface of MEMS, thereby providing ease of access for the purposes of carrying out surface processes such as doping and contact formation as well as in situ observation. As the first study demonstrating such monolithic integration in thick SOI, the work presents a pathway for scaling down to nano for future MEMS combining multiple scales. KW - Nanowires KW - Silicon KW - Top-down KW - MEMS PY - 2017 DO - https://doi.org/10.1116/1.4978047 SN - 1071-1023 VL - 35 IS - 2 SP - 022001-1 EP - 022001-7 PB - America Vacuum Society AN - OPUS4-39370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Österle, Werner A1 - Häusler, Ines A1 - Stewart, M. T1 - Ga+ implantation in a PZT film during focused ion beam micro-machining JF - Physica status solidi C N2 - The objective of the present work was to study the impact of Focused Ion Beam (FIB) machining parameters on the thickness of the damaged layer within a thin film PZT. Therefore, different Ga+- ion doses and ion energies were applied to a standard PZT film (80/20 lead zirconium titanate) under two beam incidence angles (90° and 1°). The thicknesses of the corresponding Ga+-implanted layers were then determined by cross-sectional TEM in combination with energy dispersive spectroscopic (EDS) line-scans and correlated with polarisation hysteresis loops. The results show a decrease of Ga+-implanted layer thickness with decreasing inclination angle, whereas ion energy and ion dose could be correlated with gallium concentration in the implanted layers.. Under the most unfavorable conditions the depth of the affected zone was 26 nm, it was only 2 nm for the most favorable conditions. KW - PZT KW - Focused ion beam KW - Gallium implantation KW - Polarisation-electric field loop PY - 2015 DO - https://doi.org/10.1002/pssc.201400096 SN - 1610-1634 SN - 1862-6351 SN - 1610-1642 VL - 12 IS - 3 SP - 314 EP - 317 PB - Wiley-VCH CY - Berlin AN - OPUS4-32872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wollschläger, Nicole A1 - Tasdemir, Z. A1 - Häusler, Ines A1 - Leblebici, Y. A1 - Österle, Werner A1 - Alaca, B. E. T1 - Determination of the elastic behavior of silicon nanowires within a scanning electron microscope JF - Journal of Nanomaterials N2 - Three-point bending tests were performed on double-anchored, <110> silicon nanowire samples inside a scanning electron microscope (SEM) via a micromanipulator equipped with a piezo-resistive force sensor. Representing the upper and lower boundaries achievable in a consistent manner, silicon nanowires with widths of 35 nm and 74 nm and a height of 168 nm were fabricated. The nanowires were obtained monolithically along with their 10-m-tall supports through a top-down fabrication approach involving a series of etching processes. Hence, no interface compliance was introduced between supports and nanowires. Exact nanowire dimensions and cross-sectional features were determined by transmission electron microscopy (TEM) following sample preparation through focused ion beam (FIB) machining. Conducting the experiments inside an SEM chamber further raised the opportunity of the direct observation of any deviation from ideal loading conditions such as twisting, which was taken into consideration in simulations. Measured force-displacement behavior was observed to exhibit close resemblance to simulation results obtained by finite element modeling, when the bulk value of 169 GPa was taken as the modulus of elasticity for <110> silicon. Hence, test results show neither any size effect nor evidence of residual stresses for the considered nanoscale objects. The increased effect of the native oxide with reduced nanowire dimensions was captured as well. Thus this very simple in-situ testing method was found to be an alternative to elaborate AFM measurements on geometrically formidable nanostructures. The results demonstrate the applicability of the developed fabrication approach to the incorporation of silicon nanowires in functional micromechanical devices. KW - Silicon nanowire KW - Elastic behavior KW - Scanning electron microscope KW - Mechanical properties PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370383 DO - https://doi.org/10.1155/2016/4905838 VL - 2016 SP - Article 4905838, 1 EP - 6 PB - Hindawi Publishing Corporation AN - OPUS4-37038 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witke, Klaus A1 - Österle, Werner A1 - Skopp, André A1 - Woydt, Mathias T1 - Raman microprobe spectroscopy and transmission electron microscopy of thermal sprayed ZrO2 coatings before and after rub testing of outer air seals JF - Journal of raman spectroscopy N2 - 8 wt% Y2O3-ZrO2 spray powder and thermally sprayed as thermal barrier coatings on outer air seals were characterized by Raman microprobe spectroscopy (RMS) and transmission electron microscopy to investigate the lateral distribution, composition, structure and grain size of ZrO2 phases and to separate ZrO2 and Y2O3. RMS of transfer layers on ZrO2-coated shrouds after rub tests against SiC laser-tipped metallic blades showed the formation of metallic oxides MeIMeII2O4 of spinel type. Wear tracks were partly covered by graphite and spinel-type oxides. In some cases, the latter were better detectable after laser enhanced cleaning by burning off the covering carbon layer. PY - 2001 DO - https://doi.org/10.1002/jrs.791 SN - 0377-0486 SN - 1097-4555 VL - 32 IS - 12 SP - 1008 EP - 1014 PB - Wiley CY - Chichester AN - OPUS4-1230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Theiler, Geraldine A1 - Gradt, Thomas A1 - Österle, Werner A1 - Brückner, A. A1 - Weihnacht, V. T1 - Friction and endurance of MoS2/ta-C coatings produced by laser arc deposition JF - Wear N2 - The tribological behaviour of MoS2/ta-C double layer coatings deposited by Laser-Arc technology was investigated in vacuum and air. In vacuum environment, the friction coefficient against steel balls varies between 0.005 and 0.02 depending on the contact pressure. At high contact pressures, the friction coefficient is as low as 0.005 and the life time between 340,000 and 500,000 cycles. Furthermore, it is shown that a ta-C base layer improves the performance of MoS2 coating. Surface analyses were performed before and after the tribological tests by means of SEM, EDX, XRD, and TEM. They show that in the top layer beneath the sliding surface crystallization of the initially quasi-amorphous MoS2 took place. TEM images also verified an orientation of the basal MoS2-lattice planes parallel to the surface. KW - MoS2 coatings KW - Ta-C KW - Vacuum KW - Laser arc deposition PY - 2013 DO - https://doi.org/10.1016/j.wear.2012.10.007 SN - 0043-1648 VL - 297 IS - 1-2 SP - 791 EP - 801 PB - Elsevier CY - Amsterdam AN - OPUS4-27114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tasdemir, Z. A1 - Wollschläger, Nicole A1 - Österle, Werner A1 - Leblebici, Y. A1 - Alaca, B. E. T1 - A deep etching mechanism for trench-bridging silicon nanowires JF - Nanotechnology N2 - Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with microstructures up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 m. All cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. KW - Silicon nanowire KW - Deep reactive ion etching KW - Transmission electron microscopy PY - 2016 DO - https://doi.org/10.1088/0957-4484/27/9/095303 SN - 0957-4484 SN - 1361-6528 VL - 27 IS - 9 SP - 095303-1 EP - 095303-8 PB - IOP Publishing AN - OPUS4-35789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senoner, Mathias A1 - Wirth, Thomas A1 - Unger, Wolfgang A1 - Österle, Werner A1 - Kaiander, I. A1 - Sellin, R.L. A1 - Bimberg, D. T1 - BAM-L002 - A new type of certified reference material for length calibration and testing of lateral resolution in the nanometre range JF - Surface and interface analysis N2 - A new type of test sample for the determination of lateral resolution in surface analysis is presented. The certified reference material BAM-L002 Nanoscale strip pattern for length calibration and testing of lateral resolution is an embedded cross-section of epitaxially grown layers of AlxGa1-xAs and InxGa1-xAs on GaAs substrate. The surface of the sample provides a flat pattern with strip widths of 0.4-500 nm. The combination of gratings, isolated narrow strips and sharp edges of wide strips offers improved possibilities for the calibration of a length scale, the determination of lateral resolution and the optimization of instrument settings. The feasibility of the reference material for an analysis of lateral resolution is demonstrated for SIMS. PY - 2004 DO - https://doi.org/10.1002/sia.1936 SN - 0142-2421 SN - 1096-9918 VL - 36 SP - 1423 EP - 1426 PB - Wiley CY - Chichester AN - OPUS4-4696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Senoner, Mathias A1 - Maaßdorf, A. A1 - Rooch, Heidemarie A1 - Österle, Werner A1 - Malcher, M. A1 - Schmidt, M. A1 - Kollmer, F. A1 - Paul, D. A1 - Hodoroaba, Vasile-Dan A1 - Rades, Steffi A1 - Unger, Wolfgang T1 - Lateral resolution of nanoscaled images delivered by surface-analytical instruments: application of the BAM-L200 certified reference material and related ISO standards JF - Analytical and bioanalytical chemistry N2 - The certified reference material BAM-L200, a nanoscale stripe pattern for length calibration and specification of lateral resolution, is described. BAM-L200 is prepared from a cross-sectioned epitaxially grown layer stack of AlxGa1–xAs and InxGa1–xAs on a GaAs substrate. The surface of BAM-L200 provides a flat pattern with stripe widths ranging down to 1 nm. Calibration distances, grating periods and stripe widths have been certified by TEM with traceability to the length unit. The combination of gratings, isolated narrow stripes and sharp edges of wide stripes offers plenty of options for the determination of lateral resolution, sharpness and calibration of length scale at selected settings of imaging surface-analytical instruments. The feasibility of the reference material for an analysis of the lateral resolution is demonstrated in detail by evaluation of ToF-SIMS, AES and EDX images. Other applications developed in the community are summarized, too. BAM-L200 fully supports the implementation of the revised International Standard ISO 18516 (in preparation) which is based on knowledge outlined in the Technical Report ISO/TR 19319:2013. KW - AES KW - BAM-L200 KW - CRM KW - EDX KW - Imaging KW - Lateral resolution KW - Sharpness KW - Standardisation KW - STXM KW - ToF-SIMS KW - XPEEM KW - XPS KW - Certified reference material KW - Imaging surface analysis PY - 2015 DO - https://doi.org/10.1007/s00216-014-8135-7 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 11 SP - 3211 EP - 3217 PB - Springer CY - Berlin AN - OPUS4-33033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seah, M.P. A1 - Spencer, S.J. A1 - Bensebaa, F. A1 - Vickridge, I. A1 - Danzebrink, H. A1 - Krumrey, M. A1 - Gross, Thomas A1 - Österle, Werner A1 - Wendler, E. A1 - Rheinländer, B. A1 - Azuma, Y. A1 - Kojima, I. A1 - Suzuki, N. A1 - Suzuki, M. A1 - Tanuma, S. A1 - Moon, D.W. A1 - Lee, H.J. A1 - Cho, H.M. A1 - Chen, H.Y. A1 - Wee, A. T. S. A1 - Osipowicz, T. A1 - Pan, J.S. A1 - Jordaan, W.A. A1 - Hauert, R. A1 - Klotz, U. A1 - van der Marel, C. A1 - Verheijen, M. A1 - Tamminga, Y. A1 - Jeynes, C. A1 - Bailey, P. A1 - Biswas, S. A1 - Falke, U. A1 - Nguyen, N.V. A1 - Chandler-Horowitz, D. A1 - Ehrstein, J.R. A1 - Muller, D. A1 - Dura, J.A. T1 - Critical review of the current status of thickness measurements for ultrathin SiO2 on Si - Part V: Results of a CCQM pilot study JF - Surface and interface analysis N2 - Results are reported from a pilot study under the Consultative Committee for Amount of Substance (CCQM) to compare measurements of and resolve any relevant measurement issues in, the amount of thermal SiO2 oxide on (100) and (111) orientation Si wafer substrates in the thickness range 1.5 - 8 nm. As a result of the invitation to participate in this activity, 45 sets of measurements have been made in different laboratories using 10 analytical methods: medium-energy ion scattering spectrometry (MEIS), nuclear reaction analysis (NRA), RBS, elastic backscattering spectrometry (EBS), XPS, SIMS, ellipsometry, grazing-incidence x-ray reflectrometry (GIXRR), neutron reflectometry and transmission electron microscopy (TEM). The measurements are made on separate sets of 10 carefully prepared samples, all of which have been characterised by a combination of ellipsometry and XPS using carefully established reference conditions and reference parameters. The results have been assessed against the National Physical Laboratory (NPL) data and all show excellent linearity. The remaining data sets correlate with the NPL data with average root-mean-square scatters of 0.15 nm, half being better than 0.1 nm and a few at or better than 0.05 nm. Each set of data allows a relative scaling constant and a zero thickness offset to be determined. Each method has an inherent zero thickness offset between 0 nm and 1 nm and it is these offsets, measured here for the first time, that have caused many problems in the past. There are three basic classes of offset: water and carbonadeous contamination equivalent to ~1 nm as seen by ellipsometry; adsorbed oxygen mainly from water at an equivalent thickness of 0.5 nm as seen by MEIS, NRA, RBS and possibly GIXRR; and no offset as seen by XPS using the Si 2p peaks. Each technique has a different uncertainty for the scaling constant and consistent results have been achieved. X-Ray photoelectron spectroscopy has large uncertainties for the scaling constant but a high precision and, critically, if used correctly, has zero offset. Thus, a combination of XPS and the other methods allows the XPS scaling constant to be determined with low uncertainty, traceable via the other methods. XPS laboratories returning results early were invited to test a new reference procedure. All showed very significant improvements. The reference attenuation lengths thus need scaling by 0.986 ± 0.009 (at an expansion factor of 2) deduced from the data for the other methods. Several other methods have small offsets and, to the extent that these can be shown to be constant or measurable, then these methods will also show low uncertainty. Recommendations are provided for parameters for XPS, MEIS, RBS and NRA to improve their accuracy. KW - Calibration KW - Ellipsometry KW - GIXRR KW - Interlaboratory study KW - MEIS KW - Neutron reflectometry KW - NRA KW - RBS KW - Silicon dioxide KW - SIMS KW - XPS PY - 2004 DO - https://doi.org/10.1002/sia.1909 SN - 0142-2421 SN - 1096-9918 VL - 36 IS - 9 SP - 1269 EP - 1303 PB - Wiley CY - Chichester AN - OPUS4-5549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, C.E. A1 - Pittner, Andreas A1 - Oder, Gabriele A1 - Neumann, R.S. A1 - Rooch, Heidemarie A1 - Dörfel, Ilona A1 - Österle, Werner A1 - Rethmeier, Michael T1 - Solidification of GTA aluminium weld metal: Part I - Grain morphology dependent upon alloy composition and grain refiner content JF - Welding journal KW - Aluminium KW - Gas tungsten arc welding (GTAW) KW - Grain refinement KW - Columnar to equiaxed transition (CET) KW - Epitaxial nucleation KW - Duplex nucleation theory PY - 2014 SN - 0043-2296 SN - 0096-7629 VL - 93 SP - 53-s - 59-s PB - American Welding Society CY - New York, NY AN - OPUS4-30413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rodrigues, A.C.P. A1 - Österle, Werner A1 - Gradt, Thomas A1 - Azevedo, César Roberto de Farias T1 - Impact of copper nanoparticles on tribofilm formation determined by pin-on-disc tests with powder supply: Addition of artificial third body consisting of Fe3O4, Cu and graphite JF - Tribology International N2 - Copper, magnetite and graphite particles were mixed in order to observe their impact on the coefficient of friction (CoF) during pin-on-disc tests and on the tribofilm formation after testing. Pure magnetite powder provided a value of CoF of 0.4. Magnetite-copper mixtures tested at 400 °C revealed lower CoF values (~0.4) than those at room temperature (~0.6). Magnetite-graphite and magnetite-graphite-copper mixtures presented lower CoF values (~0.3). All systems formed a magnetite-based tribofilm and patches of metallic copper were found on the tribosurfaces of the mixtures containing copper. Carbon layers and graphite nanoinclusions were observed in the graphite mixtures. The incorporation of zirconia particles, a by-product of ball milling mixing, prevented the selective transfer of graphite and copper to the tribosurfaces of some of the samples. KW - Brake pad materials KW - Sliding friction KW - Transfer layer KW - Surface analysis KW - Model friction tests PY - 2017 DO - https://doi.org/10.1016/j.triboint.2017.02.014 SN - 0301-679X VL - 110 SP - 103 EP - 112 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-40104 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ressel, P. A1 - Österle, Werner A1 - Urban, Ingrid A1 - Dörfel, Ilona A1 - Klein, A. A1 - Vogel, K. A1 - Kräutle, H. T1 - Transmission electron microscopy study of rapid thermally annealed Pd/Ge contacts on IN0.53Ga0.47As JF - Journal of applied physics PY - 1996 SN - 0021-8979 SN - 1089-7550 VL - 88 SP - 3910 EP - 3914 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-2514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ressel, P. A1 - Hao, P.H. A1 - Park, M.H. A1 - Yang, Z. C. A1 - Wang, L.C. A1 - Österle, Werner A1 - Kurpas, P. A1 - Richter, E. A1 - Kuphal, E. A1 - Hartnagel, H.L. T1 - Pd/Sb(Zn) and Pd/Ge(Zn) Ohmic Contacts on p-Type Indium Gallium Arsenide: The Employment of the Solid Phase Regrowth Principle to Achieve Optimum Electrical and Metallurgical Properties JF - Journal of electronic materials N2 - The development of two metallizations based on the solid-phase regrowth principle is presented, namely Pd/Sb(Zn) and Pd/Ge(Zn) on moderately doped In0.53Ga0.47As (p=4×1018 cm-3). Contact resistivities of 2–3×10-7 and 6–7×10-7 ?cm2, respectively, have been achieved, where both systems exhibit an effective contact reaction depth of zero and a Zn diffusion depth below 50 nm. Exhibiting resistivities equivalent to the lowest values of Au-based systems in this doping range, especially Pd/Sb(Zn) contacts are superior to them concerning metallurgical stability and contact penetration. Both metallizations have been successfully applied for contacting the base layer of InP/In0.53Ga0.47As heterojunction bipolar transistors. KW - Ohmic contacts KW - Indium gallium arsenide KW - InP/InGaAs heterojunction bipolar transistor KW - Solid-phase regrowth KW - Pd/Ge contacts KW - Pd/Sb contacts KW - Backside secondary ion mass spectrometry (SIMS) PY - 2000 DO - https://doi.org/10.1007/s11664-000-0189-y SN - 0361-5235 SN - 1543-186X VL - 29 IS - 7 SP - 964 EP - 972 PB - TMS CY - Warrendale, Pa. AN - OPUS4-7642 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reier, T. A1 - Schultze, J.W. A1 - Österle, Werner A1 - Buchal, Ch. T1 - The growth of aligned AIN-nanocrystals in aluminium after nitrogen-ion implantation at 330 K JF - Thin solid films KW - AIN KW - Al2O3 KW - Ion implantation KW - Diffusion KW - Nanocrystals PY - 2001 SN - 0040-6090 VL - 385 SP - 29 EP - 35 PB - Elsevier CY - Amsterdam AN - OPUS4-7643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Qi, H. A1 - Zhang, G. A1 - Wetzel, B. A1 - Wang, T. A1 - Wang, Q. A1 - Österle, Werner T1 - Exploring the influence of counterpart materials on tribological behaviors of epoxy composites JF - Tribology International N2 - The dependence of the friction and wear of epoxy (EP) composites materials on counterpart materials, such as standard bearing steel, medium carbon steel and chrome-plating (Cr), was investigated. The conventional composite filled with short carbon fiber (SCF) and graphite shows the highest tribological performance when rubbing against Cr, whereas, the hybrid nanocomposite (EP filled with SCF, graphite and silica nanoparticles) exhibits the lowest friction and wear when sliding against the standard bearing steel. The role of nanoparticles in the tribological performance is distinctly different when sliding against with various counterpart materials. It is demonstrated that counterpart materials exert an important influence on material transfer, tribo-oxidation and mechanical mixing of wear products, resulting in the different formation mechanisms of transfer film. KW - Counterpart materials KW - Transfer film KW - Epoxy composites KW - Nanoparticles PY - 2016 DO - https://doi.org/10.1016/j.triboint.2016.08.015 VL - 103 SP - 566 EP - 573 PB - Elsevier Ltd. AN - OPUS4-37941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pontes Rodrigues, A. C. A1 - Nunes Ribeiro, P. J. A1 - Österle, Werner A1 - de Farias Azevedo, C. R. T1 - Failure analysis as a tool to optimize the design of a ring on disc tribotest investigating the role of surface roughness JF - Engineering failure analysis N2 - The influence of the surface roughness of pearlitic grey cast iron discs on the formation of tribofilms and the evolution of the friction coefficient during a ring on disc tribotest with the addition of magnetite and magnetite–graphite nanopowders as interfacial media was investigated. The roughness parameters of the cast iron discs were varied by electro discharge machining (EDM) and grinding processes, producing four distinct surface roughness conditions. The evolution of the friction coefficient, however, did not reach the steady state for most of the samples and the role of the surface roughness on the friction coefficient could not be identified. Focused ion beam (FIB) microscopy on the cast iron discs was carried out to investigate the microstructure of the discs near the tribosurface. These results showed that the EDM process not only varied the surface roughness, but also changed the microstructure of the cast iron discs, promoting the incipient fusion of the cast iron surface, with the formation of ridges and casting defects (pores). As a result, a layer of rapidly solidified metal with a dendritic microstructure was formed near to the surface of the EDMed discs. KW - Ring-on disc tribotest KW - Surface roughness KW - EDM-processing KW - Rapid solification PY - 2015 DO - https://doi.org/10.1016/j.engfailanal.2015.03.011 SN - 1350-6307 SN - 1873-1961 VL - 56 SP - 131 EP - 141 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-34623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orts Gil, Guillermo A1 - Natte, Kishore A1 - Österle, Werner T1 - Multi-parametric reference nanomaterials for toxicology: state of the art, future challenges and potential candidates JF - RSC Advances N2 - A major requirement for the validation of methods assessing the risk associated with engineered nanoparticles (ENPs) is the use of reference materials (RMs). In the present contribution we review available RMs, ongoing projects and characterisation trends in the field. The conclusion is that actual approaches to RMs mostly deal with metrological considerations about single properties of the ENPs, typically their primary size, which can hardly be representative of nanoparticles characteristics in real testing media and therefore, not valid for reliable and comparable toxicological studies. As an alternative, we discussed the convenience and feasibility of establishing multi-parametric RMs for a series of ENPs, focusing on silica nanoparticles (SNPs). As a future perspective, the need to develop RMs based on hybrid nanoparticles is also discussed. KW - Referenzmaterialien KW - Nanopartikel KW - Toxikologie KW - Metrologie PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-292997 DO - https://doi.org/10.1039/c3ra42112k SN - 2046-2069 VL - 3 IS - 40 SP - 18202 EP - 18215 PB - RSC Publishing CY - London AN - OPUS4-29299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orts Gil, Guillermo A1 - Natte, Kishore A1 - Thiermann, Raphael A1 - Girod, Matthias A1 - Rades, Steffi A1 - Kalbe, Henryk A1 - Thünemann, Andreas A1 - Maskos, M. A1 - Österle, Werner T1 - On the role of surface composition and curvature on biointerface formation and colloidal stability of nanoparticles in a protein-rich model system JF - Colloids and surfaces B: Biointerfaces N2 - The need for a better understanding of nanoparticle–protein interactions and the mechanisms governing the resulting colloidal stability has been emphasised in recent years. In the present contribution, the short and long term colloidal stability of silica nanoparticles (SNPs) and silica–poly(ethylene glycol) nanohybrids (Sil–PEG) have been scrutinised in a protein model system. Well-defined silica nanoparticles are rapidly covered by bovine serum albumin (BSA) and form small clusters after 20 min while large agglomerates are detected after 10 h depending on both particle size and nanoparticle–protein ratio. Oppositely, Sil–PEG hybrids present suppressive protein adsorption and enhanced short and long term colloidal stability in protein solution. No critical agglomeration was found for either system in the absence of protein, proving that instability found for SNPs must arise as a consequence of protein adsorption and not to high ionic environment. Analysis of the small angle X-ray scattering (SAXS) structure factor indicates a short-range attractive potential between particles in the silica-BSA system, which is in good agreement with a protein bridging agglomeration mechanism. The results presented here point out the importance of the nanoparticle surface properties on the ability to adsorb proteins and how the induced or depressed adsorption may potentially drive the resulting colloidal stability. KW - Nanoparticles KW - Protein corona KW - Biointerface KW - BSA KW - PEG KW - Colloidal stability PY - 2013 DO - https://doi.org/10.1016/j.colsurfb.2013.02.027 SN - 0927-7765 SN - 1873-4367 VL - 108 SP - 110 EP - 119 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-30100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Orts Gil, Guillermo A1 - Natte, Kishore A1 - Drescher, Daniela A1 - Bresch, Harald A1 - Mantion, Alexandre A1 - Kneipp, J. A1 - Österle, Werner T1 - Characterisation of silica nanoparticles prior to in vitro studies: from primary particles to agglomerates JF - Journal of nanoparticle research N2 - The size, surface charge and agglomeration state of nanoparticles under physiological conditions are fundamental parameters to be determined prior to their application in toxicological studies. Although silica-based materials are among the most promising candidates for biomedical applications, more systematic studies concerning the characterisation before performing toxicological studies are necessary. This interest is based on the necessity to elucidate the mechanisms affecting its toxicity. We present here TEM, SAXS and SMPS as a combination of methods allowing an accurate determination of single nanoparticle sizes. For the commercial material, Ludox TM50 single particle sizes around 30 nm were found in solution. DLS measurements of single particles are rather affected by polydispersity and particles concentration but this technique is useful to monitor their agglomeration state. Here, the influence of nanoparticle concentration, ionic strength (IS), pH and bath sonication on the agglomeration behaviour of silica particles in solution has been systematically investigated. Moreover, the colloidal stability of silica particles in the presence of BSA has been investigated showing a correlation between silica and protein concentrations and the formation of agglomerates. Finally, the colloidal stability of silica particles in standard cell culture medium has been tested, concluding the necessity of surface modification in order to preserve silica as primary particles in the presence of serum. The results presented here have major implications on toxicity investigations because silica agglomeration will change the probability and uptake mechanisms and thereby may affect toxicity. KW - Silica KW - Toxicology KW - Agglomeration KW - BSA KW - Nanoparticles KW - Characterisation PY - 2011 DO - https://doi.org/10.1007/s11051-010-9910-9 SN - 1388-0764 SN - 1572-896X VL - 13 IS - 4 SP - 1593 EP - 1604 PB - Springer AN - OPUS4-21179 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ortel, Erik A1 - Häusler, Ines A1 - Österle, Werner A1 - Narbey, S. A1 - Oswald, F. A1 - Andersen, I. H. A1 - Holzweber, Markus A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan T1 - In-depth structural and chemical characterization of engineered TiO2 films JF - Surface and Interface Analysis N2 - Analytical routines for a comprehensive in-depth morphological, structural, and chemical characterization of functionalized TiO2 films by using different state-of-the-art analytical techniques are presented and discussed with the main objective to identify potential reference TiO2 coating parameters able to be certified at a later stage. TiO2 films fabricated by two different synthetic procedures as representative for two main large-scale applications were selected: (i) pulsed d.c. magnetron sputtering for photocatalytic applications and (ii) screen printing from preformed anatase nanoparticles. The screen-printed films were further loaded with a sensitizing dye for application as a dye-sensitized solar cell. Film properties such as microstructure and crystallographic texture of pulsed d.c. magnetron sputtering synthesized films were systematically studied by means of scanning nanobeam electron diffraction in a transmission electron microscope and the surface and inner morphology by scanning electron microscopy. The dye distribution over the depth of screen-printed TiO2 layers was analyzed before and after dye-loading by means of energy dispersive X-ray spectroscopy at scanning electronmicroscope, Auger electron spectroscopy and time-of-flight secondary ion mass spectrometry. The long-term goal of the present study is the improvement of quality of the TiO2 film parameters as measured by using different types of reference TiO2 coatings having specific parameters certified. T2 - 16th European Conference on Applications of Surface and Interface Analysis ECASIA'15 CY - Granada, Spain DA - 28.09.2015 KW - Mapping KW - Line scan KW - Depth profiling KW - TiO2 films KW - Crystallinity KW - Ru dye sensitizer PY - 2016 DO - https://doi.org/10.1002/sia.5966 SN - 0142-2421 SN - 1096-9918 VL - 48 SP - 664 EP - 669 PB - John Wiley & Sons, Ltd. AN - OPUS4-36791 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nikonov, A. Y.. A1 - Dmitriev, A. I. A1 - Österle, Werner T1 - Molecular dynamics study of slip mechanisms of nickel with amorphous-like Ni-P coating T2 - ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016 N2 - In the paper by using molecular dynamics method we investigate behavior of nickel-phosphorus compound in amorphous-like state under conditions of shear loading at the constant velocity. Samples with an amorphous layer of pure nickel and nickel-phosphorus compound were considered. The analysis showed that forces of shear resistance in the sample with an amorphous layer containing phosphorus in about 3 times less than the sample with a layer of pure nickel. Thus, it was shown that nickel-phosphorous coating in amorphous-like state may exhibit low friction properties, and, therefore, serve as the solid lubricant material. T2 - International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures CY - Tomsk, Russia DA - 19.09.2016 KW - Local structural transformations KW - Lattice PY - 2016 DO - https://doi.org/10.1063/1.4966457 VL - 1783 SP - 020164-1 EP - 020164-4 AN - OPUS4-38932 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nebauer, E. A1 - Mai, M. A1 - Würfl, J. A1 - Österle, Werner T1 - Au/Pt/Ti/Pt base contacts to n-InGaP/p+-GaAs for self-passivating HBT ledge structures JF - Semiconductor science and technology N2 - Multi-layer ohmic contact systems such as Au/Pt/Ti/Pt on III-V double layers such as n-InGaP/p+-GaAs are of considerable technological relevance, e.g. for heterojunction bipolar transistors. The paper shows that such contacts can be effectively reacted through the InGaP layer and exhibit very good contact resistances (0.1 O mm) to the base layer if the thickness of the first Pt layer is properly matched to the thickness of the contacted InGaP layer. Interdiffusion and phase formation associated with the annealing processes are studied by cross-sectional analytical transmission electron microscopy, thin-film x-ray diffraction and Auger electron spectroscopy depth profiling. Thermal ageing experiments up to 400 °C show good electrical stability. Device related reliability tests do not show any degradation effect related to this novel base contact. PY - 2000 DO - https://doi.org/10.1088/0268-1242/15/8/306 SN - 0268-1242 SN - 1361-6641 VL - 15 IS - 8 SP - 818 EP - 822 PB - IOP Publ. CY - Bristol AN - OPUS4-2368 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Natte, Kishore A1 - Behnke, Thomas A1 - Orts Gil, Guillermo A1 - Würth, Christian A1 - Friedrich, Jörg Florian A1 - Österle, Werner A1 - Resch-Genger, Ute T1 - Synthesis and characterisation of highly fluorescent core-shell nanoparticles based on Alexa dyes JF - Journal of nanoparticle research N2 - Current and future developments in the emerging field of nanobiotechnology are closely linked to the rational design of novel fluorescent nanomaterials, e.g. for biosensing and imaging applications. Here, the synthesis of bright near infrared (NIR)-emissive nanoparticles based on the grafting of silica nanoparticles (SNPs) with 3-aminopropyl triethoxysilane (APTES) followed by covalent attachment of Alexa dyes and their subsequent shielding by an additional silica shell are presented. These nanoparticles were investigated by dynamic light scattering (DLS), transmission electron microscopy (TEM) and fluorescence spectroscopy. TEM studies revealed the monodispersity of the initially prepared and fluorophorelabelled silica particles and the subsequent formation of raspberry-like structures after addition of a silica precursor.Measurements of absolute fluorescence quantum yields of these scattering particle suspensions with an integrating sphere setup demonstrated the influence of dye labelling density-dependent fluorophore aggregation on the signaling behaviour of such nanoparticles. KW - Silica KW - Alexa dyes KW - Fluorescent particles KW - Quantum yields KW - Nanoparticles KW - Protective shell KW - Nanobiotechnology PY - 2012 DO - https://doi.org/10.1007/s11051-011-0680-9 SN - 1388-0764 SN - 1572-896X VL - 14 IS - 2 SP - 680-1 - 680-10 PB - Kluwer CY - Dordrecht AN - OPUS4-25872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Naghib Zadeh, Hamid A1 - Glitzky, Carsten A1 - Österle, Werner A1 - Rabe, Torsten T1 - Low temperature sintering of barium titanate based ceramics with high dielectric constant for LTCC applications JF - Journal of the European Ceramic Society N2 - The sintering temperature of BaTiO3 powder was reduced to 900 °C due to the ZnO-B2O3-Li2O-Nb2O5-Co2O3 addition. Excellent densification was achieved after sintering at 900 °C for 2 h. The low sintering temperature of newly developed capacitor materials allows a co-firing with pure silver electrodes. The dielectric constant and the temperature stability of the dielectric constant are strongly correlated with the composition of the ZnO-B2O3-Li2O additives. A high dielectric constant up to 3000 and a dielectric loss less than 0.024 were measured on multilayer capacitors sintered at 900 °C with silver inner electrodes. KW - BaTiO3 and titanates KW - Capacitors KW - Dielectric properties KW - LTCC PY - 2011 DO - https://doi.org/10.1016/j.jeurceramsoc.2010.10.003 SN - 0955-2219 SN - 1873-619X VL - 31 IS - 4 SP - 589 EP - 596 PB - Elsevier Ltd. CY - Oxford AN - OPUS4-22886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merk, Virginia A1 - Schulte, Franziska A1 - Rooch, Heidemarie A1 - Feldmann, Ines A1 - Dörfel, Ilona A1 - Österle, Werner A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Surface-enhanced Raman scattering with silver nanostructures generated in situ in a sporopollenin biopolymer matrix JF - Chemical communications N2 - Silver nanoparticles were generated based on citrate reduction in the ultrastructure of the sporopollenin biopolymer of Ambrosia artemisiifolia (ragweed) and Secale cereale (rye). The nanoparticles enable the acquisition of SERS spectra and thereby a vibrational characterization of the local molecular structure of sporopollenin. PY - 2011 DO - https://doi.org/10.1039/c0cc05326k SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x N1 - Geburtsname von Merk, Virginia: Joseph, V. - Birth name of Merk, Virginia: Joseph, V. VL - 47 IS - 11 SP - 3236 EP - 3238 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-23482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Materna-Morris, E. A1 - Österle, Werner A1 - Schwaab, P. T1 - Röntgenmikroanalyse im Elektronenmikroskop, Teil II: Härtbare, warmfeste Stähle JF - Praktische Metallographie = Practical metallography PY - 1990 SN - 0032-678X VL - 27 SP - 383 EP - 402 PB - Hanser CY - München AN - OPUS4-2460 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Link, T. A1 - Österle, Werner T1 - Röntgenmikroanalyse im Elektronenmikroskop, Teil IV: Superlegierungen JF - Praktische Metallographie = Practical metallography PY - 1991 SN - 0032-678X VL - 28 SP - 101 EP - 114 PB - Hanser CY - München AN - OPUS4-2469 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kranz, I. A1 - Gonzalez, J.B. A1 - Dörfel, Ilona A1 - Gemeinert, Marion A1 - Griepentrog, Michael A1 - Klaffke, Dieter A1 - Knabe, C. A1 - Österle, Werner A1 - Gross, U. T1 - Biological response to micron- and nanometer-sized particles known as potential wear products from artificial hip joints: Part II: Reaction of murine macrophages to corundum particles of different size distributions JF - Journal of biomedical materials research / A KW - Macrophages KW - Cytokines KW - Nanoparticles (NP) KW - Microparticles (MP) KW - Corundum PY - 2009 DO - https://doi.org/10.1002/jbm.a.32121 SN - 1549-3296 SN - 1552-4965 VL - 89A IS - 2 SP - 390 EP - 401 PB - Wiley CY - Hoboken, NJ AN - OPUS4-19346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klein, A. A1 - Urban, Ingrid A1 - Ressel, P. A1 - Nebauer, E. A1 - Merkel, U. A1 - Österle, Werner T1 - Preparation, transmission electron microscopy, and microanalytical investigations of metal-III-V semiconductor interfaces JF - Materials characterization PY - 1996 SN - 1044-5803 SN - 1873-4189 VL - 37 SP - 143 EP - 151 PB - Elsevier CY - New York, NY AN - OPUS4-2528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klaar, H.J. A1 - Schwaab, P. A1 - Österle, Werner T1 - Ringversuch zur quantitativen Ermittlung der Versetzungsdichte im Elektronenmikroskop JF - Praktische Metallographie = Practical metallography PY - 1992 SN - 0032-678X VL - 29 SP - 3 EP - 25 PB - Hanser CY - München AN - OPUS4-2473 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kharrazi, Y.H.K. A1 - Österle, Werner T1 - Untersuchung der Mikrostruktur asbesthaltiger Bremsbeläge und Möglichkeiten der Asbestsubstitution JF - Praktische Metallographie = Practical metallography PY - 2002 SN - 0032-678X N1 - Sprachen: Deutsch/Englisch - Languages: German/English VL - 39 IS - 10 SP - 542 EP - 556 PB - Hanser CY - München AN - OPUS4-2372 LA - mul AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiao, Feng A1 - Österle, Werner A1 - Portella, Pedro Dolabella A1 - Ziebs, Josef T1 - Biaxial path-dependence of low-cycle fatigue behaviour and microstructure of alloy 800 H at room temperature JF - Materials science and engineering A N2 - Low-cycle fatigue experiments under combined axial-torsional loading have been carried out on alloy 800 H tubular specimens at room temperature. In comparison with proportional loading, an extra cyclic hardening effect produced by nonproportional loading was observed. The microstructure study highlights the fact that the dislocation arrangement under proportional loading is significantly different from that under nonproportional loading. Mechanical twinning was found in specimens cycled under axial loading and nonproportional loading. It is suggested that mechanical twinning depends not only on shear stress but also on normal stress on the plane of maximum shearing. The extra hardening can be interpreted in terms of the deformation microstructure. Fatigue cracking was initiated generally at the specimen surfaces along the plane of maximum shearing, but under nonproportional loading cracks were found also in the bulk of the specimens. Transcrystalline crack propagation was observed in the specimens after proportional and nonproportional LCF tests. PY - 1995 DO - https://doi.org/10.1016/0921-5093(94)09690-2 SN - 0921-5093 SN - 1873-4936 VL - 196 IS - 1 SP - 19 EP - 24 PB - Elsevier CY - Amsterdam AN - OPUS4-2503 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jiao, F. A1 - Bettge, Dirk A1 - Österle, Werner A1 - Ziebs, Josef T1 - Tension-compression asymmetry of the [001] single crystal nickel-base superalloy SC16 under cyclic loading at elevated temperatures JF - Acta materialia PY - 1996 SN - 1359-6454 SN - 1873-2453 VL - 44 SP - 3933 EP - 3942 PB - Elsevier Science CY - Kidlington AN - OPUS4-2509 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Häusler, Ines A1 - Dörfel, Ilona A1 - Peplinski, Burkhard A1 - Dietrich, Paul A1 - Unger, Wolfgang A1 - Österle, Werner T1 - Comprehensive characterization of ball-milled powders simulating a tribofilm system JF - Materials characterization N2 - A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ball milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS2 and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. KW - Tribofilm model system KW - Ball milling KW - X-ray powder diffraction KW - Transmission electron microscopy PY - 2016 DO - https://doi.org/10.1016/j.matchar.2015.11.024 SN - 1044-5803 SN - 1873-4189 VL - 111 SP - 183 EP - 192 PB - Elsevier CY - New York, NY AN - OPUS4-35051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hinrichs, R. A1 - Zen Vasconcellos, M.A. A1 - Österle, Werner A1 - Prietzel, C. T1 - Amorphization of graphite flakes in gray cast iron under tribological load JF - Materials Research N2 - A gray cast iron disc, which had been submitted to a heavy duty automotive brake test, was examined with energy filtered transmission electron microscopy. A graphite flake in a convenient angular position showed the shear interaction of graphite layers with the iron matrix in nano-scale resolution. Atomic layers of graphite were wedged into the ferritic bulk, allowing the entrance of oxygen and the subsequent formation of magnetite. The exfoliated few-layer graphene batches deformed heavily when forced into the matrix. When Raman spectra from the disc surface, which show distinctive carbonaceous bands, were compared with Raman spectra from graphite subjected to deformation in a shaker mill with different milling times, it could be seen that the shear stress on the brake surface was much more effective to induce disorder than the milling, where compressive and impact forces had been additionally exerted on the sample. During shear load the high anisotropy of elastic modulus in the graphite crystalline structure and the low adhesion between graphite basal planes allowed the exfoliation of wrinkled few-layer grapheme batches, causing the formation of more defect related Raman bands than the mechanical stress during high-energy milling. KW - Graphite KW - Shear load KW - Amorphization KW - EFTEM KW - Raman spectroscopy PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469227 DO - https://doi.org/10.1590/1980-5373-MR-2017-1000 SN - 1516-1439 SN - 1980-5373 VL - 21 IS - 4 SP - e20171000, 1 EP - 6 PB - Universidade Federal de São Carlos CY - São Carlos AN - OPUS4-46922 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hinrichs, R. A1 - Vasconcellos, M.A.Z. A1 - Österle, Werner A1 - Prietzel, Claudia T1 - A TEM snapshot of magnetite formation in brakes: the role of the disc's cast iron graphite lamellae in third body formation JF - Wear N2 - A cross-section sample of the friction film formed on top of a disc during a brake testing procedure against Polymer Matrix Composite pads was made using a Focused Ion Beam (FIB). The FIB-cut sampled the "third body" magnetite layer and the upper part of the cast iron disc containing a graphite flake. Images of the sample examined in a Energy Filtered Transmission Electron Microscope captured an instant view of the important role of the graphite flakes in magnetite formation, where few layer graphene batches interacted with the iron border promoting cracking and oxidation along the graphite–iron interface. The resulting nano-scale interlayer of magnetite and strongly disordered graphite formed a third body which yielded adequate brake performance. KW - Cast iron KW - Carbon KW - Graphite KW - Tribochemistry KW - Electron microscopy PY - 2011 DO - https://doi.org/10.1016/j.wear.2010.11.008 SN - 0043-1648 VL - 270 IS - 5-6 SP - 365 EP - 370 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-23189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Grulke, E. A. A1 - Yamamoto, K. A1 - Kumagai, K. A1 - Häusler, Ines A1 - Österle, Werner A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Brown, S. C. A1 - Chan, C. A1 - Zheng, J. A1 - Yamamoto, K. A1 - Yashiki, K. A1 - Song, N. W. A1 - Kim, Y. H. A1 - Stefaniak, A. B. A1 - Schwegler-Berry, D. A1 - Coleman, V. A. A1 - Jämting, Å. K. A1 - Herrmann, J. A1 - Arakawa, T. A1 - Burchett, W. W. A1 - Lambert, J. W. A1 - Stromberg, A. J. T1 - Size and shape distributions of primary crystallites in titania aggregates JF - Advanced Powder Technology N2 - The primary crystallite size of titania powder relates to its properties in a number of applications. Transmission electron microscopy was used in this interlaboratory comparison (ILC) to measure primary crystallite size and shape distributions for a commercial aggregated titania powder. Data of four size descriptors and two shape descriptors were evaluated across nine laboratories. Data repeatability and reproducibility was evaluated by analysis of variance. One-third of the laboratory pairs had similar size descriptor data, but 83% of the pairs had similar aspect ratio data. Scale descriptor distributions were generally unimodal and were well-described by lognormal reference models. Shape descriptor distributions were multi-modal but data visualization plots demonstrated that the Weibull distribution was preferred to the normal distribution. For the equivalent circular diameter size descriptor, measurement uncertainties of the lognormal distribution scale and width parameters were 9.5% and 22%, respectively. For the aspect ratio shape descriptor, the measurement uncertainties of the Weibull distribution scale and width parameters were 7.0% and 26%, respectively. Both measurement uncertainty estimates and data visualizations should be used to analyze size and shape distributions of particles on the nanoscale. KW - Measurement uncertainty KW - Size distribution KW - Shape distribution KW - TEM KW - Titania PY - 2017 DO - https://doi.org/10.1016/j.apt.2017.03.027 SN - 0921-8831 VL - 28 IS - 7 SP - 1647 EP - 1659 PB - Elsevier B.V. AN - OPUS4-40478 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gemeinert, Marion A1 - Dörfel, Ilona A1 - Griepentrog, Michael A1 - Gross, U. A1 - Klaffke, Dieter A1 - Knabe, C. A1 - Kranz, I. A1 - Österle, Werner T1 - Biological response to micron- and nanometer-sized particles known as potential wear products from artificial hip joints: Part I: Selection and characterization of model particles JF - Journal of biomedical materials research / A KW - Hip joint endoprostheses KW - Wear products KW - Particle size distribution KW - Model particles KW - Dispersing behavior of particles PY - 2009 DO - https://doi.org/10.1002/jbm.a.31952 SN - 1549-3296 SN - 1552-4965 VL - 89A IS - 2 SP - 379 EP - 389 PB - Wiley CY - Hoboken, NJ AN - OPUS4-19345 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dück, Alexander A1 - Gamer, Nadja A1 - Gesatzke, Wolfgang A1 - Griepentrog, Michael A1 - Österle, Werner A1 - Sahre, Mario A1 - Urban, Ingrid T1 - Ti/TiN multilayer coatings: deposition technique, characterization and mechanical properties JF - Surface and coatings technology N2 - Ti/TiN multilayer coatings with multilayer periods in the range 5–50 nm and a final thickness of 2 µm were deposited on steel substrates by cyclic modulation of nitrogen gas flow into the chamber of a PVD sputtering device. Coating characterization was performed by cross-sectional transmission electron microscopy, glancing-angle X-ray diffraction and instrumental indentation testing. Individual a-titanium and titanium nitride layers were always observed, although for the finer microstructures, the TiN layers were thicker than the Ti layers by a factor three. The plastic hardness of the films increased steadily with decreasing layer spacing, following a Hall–Petch relationship. Finally, a hardness value of 42 GPa was reached, which is similar to that of a thick TiN monolayer, prepared under the same coating conditions. KW - Ti/TiN KW - Multilayer KW - Magnetron sputtering KW - Mechanical properties KW - Cross-sectional transmission electron microscopy (XTEM) PY - 2001 DO - https://doi.org/10.1016/S0257-8972(01)01171-9 SN - 0257-8972 VL - 142-144 SP - 579 EP - 584 PB - Elsevier Science CY - Lausanne AN - OPUS4-7646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dörfel, Ilona A1 - Österle, Werner A1 - Urban, Ingrid A1 - Bouzy, E. A1 - Morlok, O. T1 - Microstructural characterization of binary and ternary hard coating sytems for wear protection - Part II: Ti(CN) PACVD coatings JF - Surface and coatings technology KW - Microstructure KW - PACVD KW - Solid lubrication KW - Texture KW - TiC KW - TiN KW - Ti(CN) PY - 1999 SN - 0257-8972 VL - 116-119 SP - 898 EP - 905 PB - Elsevier Science CY - Lausanne AN - OPUS4-2365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dörfel, Ilona A1 - Österle, Werner A1 - Urban, Ingrid A1 - Bouzy, E. T1 - Microstructural characterization of binary and ternary hard coating systems for wear protection - Part I: PVD coatings JF - Surface and coatings technology N2 - Different wear-resistant coatings produced by physical vapour deposition (PVD) were characterized with the aid of cross-sectional transmission electron microscopy (XTEM). All coating systems were optimized by the producers and exhibited good properties with respect to their special applications. The microstructure, texture and chemical composition of binary and ternary systems produced by the arc process [TiN, CrN, Cr2N (Ti, Cr)N on steel substrates] and magnetron sputtering process [TiN, CrN on steel substrates, (Ti, Al)N on Si-substrate] were investigated. All coatings had a more or less columnar microstructure, which was interrupted by interlayers in some cases. Whereas arc coatings always did show some kind of substrate modification, the latter was not observed after magnetron sputtering. Electron diffraction normally revealed a mono-phase fcc structure, except at sites very near to the interface. Only for the systems Cr–N and (Ti, Cr)–N were different additional phases observed at low nitrogen partial pressures. KW - Arc bond sputtering KW - Arc deposition KW - Magnetron sputtering KW - TEM KW - XTEM PY - 1999 UR - http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVV-3VTRSCY-G&_user=963821&_coverDate=01%2F29%2F1999&_rdoc=14&_fmt=summary&_orig=browse&_srch=doc-info(%23toc%235544%231999%23998889997%2360972%23FLA%23display%23Volume)&_cdi=5544&_sort=d&_docanch DO - https://doi.org/10.1016/S0257-8972(98)00735-X SN - 0257-8972 VL - 111 IS - 2-3 SP - 199 EP - 209 PB - Elsevier Science CY - Lausanne AN - OPUS4-2364 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dörfel, Ilona A1 - Rooch, Heidemarie A1 - Österle, Werner T1 - Microstructural differences between two Zr(C,N) coatings revealed by analytical transmission electron microscopy JF - Thin solid films N2 - The microstructures of two samples of a Zr(C,N) coating on steel, which unexpectedly differed in their tribological properties, were investigated by analytical transmission electron microscopy. The samples were produced by a cathodic arc evaporation process in two commercial coating devices under similar coating conditions with the exception of the number of Zr targets. The source of the differing tribological properties of the samples was detected by analytical transmission electron microscopy (TEM) methods energy-dispersive X-ray spectroscopy (EDX), energy filtering TEM (EFTEM), electron diffraction, high resolution electron microscopy, and high angel annular dark field. The TEM preparation and the results of the TEM investigations are shown in detail. The origin of the unexpected behavior was determined to be a nano-scale multilayer structure that existed only in the tribologically superior specimen. EDX and EFTEM investigations indicated enrichment in oxygen at the interface between coating and steel substrate in the tribologically inferior sample. Findings of the microstructural configuration were obtained by taking a closer look at the structure and comparing the results of the several analytical TEM techniques. This allows the allocation of the concentration fluctuations in N, C, and Zr to the two thickness fractions of the nano multilayers and a local correlation of the identified minority phase Zr3(C,N)4 to the higher N content in the narrower type of the multilayer fraction of the sample with the excellent tribological properties. The minority phase Zr3(C,N)4 is randomly distributed in the sample with the defective tribological properties. Coating conditions are not topic of this work, but after discussion of the TEM results, the fact that one of the coating devices worked with one Zr target and the other one with two, could be identified as cause for the formation of the nano multilayer structure in the sample with the superior tribological properties. KW - Analytical transmission electron microscopy KW - Tribological coatings KW - Multilayers KW - Analytical TEM KW - Coatings KW - Nano-multilayer PY - 2012 DO - https://doi.org/10.1016/j.tsf.2012.02.051 SN - 0040-6090 VL - 520 IS - 13 SP - 4275 EP - 4281 PB - Elsevier CY - Amsterdam AN - OPUS4-25657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dörfel, Ilona A1 - Gesatzke, Wolfgang A1 - Österle, Werner A1 - Skopp, André T1 - Characterization of defects in dry-pressed green bodies JF - Key engineering materials PY - 1994 SN - 1013-9826 VL - 89-91 SP - 763 EP - 767 PB - Trans Tech Publ. CY - Aedermannsdorf AN - OPUS4-2413 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Orts Gil, Guillermo A1 - Laube, G. A1 - Natte, Kishore A1 - Veh, R.W. A1 - Österle, Werner A1 - Kneipp, Janina T1 - Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects JF - Analytical and bioanalytical chemistry N2 - Cell cultures form the basis of most biological assays conducted to assess the cytotoxicity of nanomaterials. Since the molecular environment of nanoparticles exerts influence on their physicochemical properties, it can have an impact on nanotoxicity. Here, toxicity of silica nanoparticles upon delivery by fluid-phase uptake is studied in a 3T3 fibroblast cell line. Based on XTT viability assay, cytotoxicity is shown to be a function of (1) particle concentration and (2) of fetal calf serum (FCS) content in the cell culture medium. Application of dynamic light scattering shows that both parameters affect particle agglomeration. The DLS Experiments verify the stability of the nanoparticles in culture medium without FCS over a wide range of particle concentrations. The related toxicity can be mainly accounted for by single silica nanoparticles and small agglomerates. In contrast, agglomeration of silica nanoparticles in all FCS-containing media is observed, resulting in a decrease of the associated toxicity. This result has implications for the evaluation of the cytotoxic potential of silica nanoparticles and possibly also other nanomaterials in standard cell culture. KW - Agglomeration KW - Cytotoxicity KW - Fibroblast cells KW - Serum proteins KW - Silica nanoparticles PY - 2011 DO - https://doi.org/10.1007/s00216-011-4893-7 SN - 1618-2642 SN - 1618-2650 VL - 400 IS - 5 SP - 1367 EP - 1373 PB - Springer CY - Berlin AN - OPUS4-23678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, Andrey A1 - Österle, Werner T1 - Modeling of brake pad-disc interface with emphasis to dynamics and deformation of structures JF - Tribology International N2 - The frictional behavior at local contacts in an automotive brake system was analysed on the basis of computer simulation by movable cellular automata method. The boundary conditions of the model were adjusted to experimental observations obtained by TEM. The model proved to be adequate for simulating mechanical mixing and velocity accommodation at the pad-disc interface. Dynamics of particle interaction were visualized by showing rotation angles and velocity vectors. The model provided information on the development of plastic deformation for metal-on-metal contacts and on crack formation at graphite lamellae of cast iron disc. Results are in agreement with conventional friction theories. KW - Nanotribology KW - Pad-disc interface KW - Simulation KW - Mechanically mixed layer PY - 2010 DO - https://doi.org/10.1016/j.triboint.2009.10.012 SN - 0301-679X VL - 43 IS - 4 SP - 719 EP - 727 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-20876 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Wetzel, B. A1 - Zhang, G. T1 - Mesoscale modeling of the mechanical and tribological behavior of a polymer matrix composite based on epoxy and 6 vol.% silica nanoparticles JF - Computational materials science N2 - A model based on movable cellular automata (MCA) is described and applied for simulating the stress–strain and sliding behavior of a nanocomposite consisting of an epoxy matrix and 6 vol.% of homogeneously distributed silica nanoparticles. Tensile tests were used for verification of the model. It was realized that a slight modification of epoxy properties due to the addition of silica nanoparticles had to be taken into account in order to obtain good correlation between experimental and modeling results. On the other hand, sliding simulations revealed no susceptibility of results to slight modifications of matrix properties, but a significant impact of nanoparticles on the interface structure and smoothness of sliding mechanism. Furthermore, assuming both possibilities, bond breaking and rebinding of automata pairs, can explain different friction levels of polymer materials. KW - Nanocomposite KW - Stress–strain behavior KW - Movable cellular automata KW - Sliding simulation KW - Mechanically mixed layer KW - Coefficient of friction PY - 2015 DO - https://doi.org/10.1016/j.commatsci.2015.08.029 SN - 0927-0256 VL - 110 SP - 204 EP - 214 PB - Elsevier CY - Amsterdam AN - OPUS4-34013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Numerical simulation of typical contact situations of brake friction materials JF - Tribology International N2 - In the paper, a model typical for contact situations of automotive brakes is established based on the method of movable cellular automata. The processes taking place at local contacts in an automotive brake system are analysed. Based on microscopic and micro-analytical observations, the following contact situations were simulated: (i) a couple of ferritic steel against pearlitic steel, both covered by an oxide layer mixed with graphite nanoparticles and (ii) the same situation but without oxide layers. The results of calculated mean coefficients of friction of the oxide-on-oxide contact correspond well to expected values for a real braking system, whereas steel-on-steel contact are twice as high. This allows one to make some conclusions; for example, oxide formation will take place more quickly than friction layer elimination, and finally this is responsible for the stabilisation of the coefficient of friction. KW - Friction KW - Primary contact KW - Automotive brake system KW - Numerical simulation KW - Method of movable cellular automata PY - 2008 DO - https://doi.org/10.1016/j.triboint.2007.04.001 SN - 0301-679X VL - 41 IS - 1 SP - 1 EP - 8 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-15841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A.I. A1 - Österle, Werner A1 - Kloß, Heinz T1 - Numerical Simulation of Mechanically Mixed Layer Formation at Local Contacts of an Automotive Brake System JF - Tribology transactions KW - Nanotribology KW - Automotive Brakes KW - Dynamic Modelling KW - Friction Mechanisms KW - Mechanically Mixed Layer KW - Movable Cellular Automata PY - 2008 DO - https://doi.org/10.1080/10.40.2000802380314 SN - 1040-2004 SN - 1547-397X VL - 51 SP - 1 EP - 7 PB - Taylor & Francis CY - Philadelphia, Pa. AN - OPUS4-18696 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A.I. A1 - Nikonov, A.Y. A1 - Österle, Werner T1 - Multiscale modeling of low friction sliding behavior of a hybrid epoxy-matrix nanocomposite T2 - Procedia Structural Integrity N2 - The method of movable cellular automata (MCA) and method of molecular dynamics (MD) were applied to simulate the friction and sliding behavior of model-tribofilms formed from a nanocomposite consisting of an epoxy matrix, 10 vol % micron-sized carbon fibers and 5 vol. % silica nanoparticles. Whereas MCA considered the tribofilm as an agglomerate of silica nanoparticles released from the composite and mixed with graphite particles, MD simulated the sliding behavior of an amorphous silica layer supported by stiff crystalline substrates on both sides. The MCA model provided reasonable quantitative results which corroborate experimental findings at moderate stressing conditions. The very low coefficient of friction observed experimentally under severe stressing conditions was not explained by this model. This could be attributed to the lack of mechanical data at the high temperature expected under these conditions. Although based on a simpler assumption of the tribofilm composition, MD-modelling could be easily applied to the expected high flash temperature and was able to predict friction reduction and smooth sliding under these conditions. T2 - 21st European Conference on Fracture ECF21 CY - Catania, Italy DA - 20.06.2016 KW - Silica nanoparticle KW - Hybrid composite KW - Tribofilm KW - Molecular dynamics KW - Movable cellular automata PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-379402 DO - https://doi.org/10.1016/j.prostr.2016.06.294 VL - 2 SP - 2347 EP - 2354 PB - Elsevier Ltd. AN - OPUS4-37940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dmitriev, A. I. A1 - Österle, Werner T1 - Sliding simulation of automotive brake primary contact with variable amounts of copper and graphite nanoparticles T2 - ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2016 N2 - Copper is one of the most important components in brake pads and its amount can reach up to 14%. In spite of a number of positive features copper usage in brake pad formulations has recently become the subject of considerable discussions, primarily due to concerns about potential risks related to environmental impacts of copper particles. So, for developing new pad formulations with possible replacements of copper content, it is very important to understand the functionality of copper additions to brake friction materials. In the paper theoretical investigation of the role of copper as a pad ingredient was carried out on the basis of modelling by the method of movable cellular automata (MCA). In the study the concentration of copper particles in a Fe3O4-matrix was varied. The sliding simulations were performed while assuming material properties at 500 degrees C in order to assess the beneficial role of copper during severe braking conditions corresponding to fading cycles during dynamometer testing. T2 - International Conference on Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures CY - Tomsk, Russia DA - 19.09.2016 KW - Polymer matrix composite KW - Silica nanoparticles KW - Friction KW - Wear PY - 2016 DO - https://doi.org/10.1063/1.4966337 VL - 1783 SP - 020044-1 EP - 020044-4 AN - OPUS4-38933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dmitriev, A. I. A1 - Häusler, Ines A1 - Wetzel, B. A1 - Zhang, G. A1 - Österle, Werner T1 - Modeling of the stress-strain behavior of an epoxy-based nanocomposite filled with silica nanoparticles JF - Materials and Design N2 - The method of movable cellular automata (MCA) was applied to simulate the stress-strain behavior of a nano composite consisting of an epoxy matrix and 6 vol. % silica nano particles. The size of the elements used for modelling was fixed at 10 nm, corresponding approximately to the diameter of the filler particles. Since not only the stress-strain response of the two constituents but also debonding of neighboring particles and granular flow was taken into account, plastic deformation as well as crack initiation and propagation could be simulated with the model. Modelling results were compared with tensile test results of both, pure epoxy as well as the epoxy-6 vol. % SiO2 composite. Since assuming bulk properties of the two constituents did not yield satisfactory results, slight modifications of the nanoparticle response functions and nanostructures were tested numerically. Finally, it was observed that only the assumption of slightly increased strength properties of the epoxy yielded good correlation between experimental and modelling results. This was attributed to an increased cross linking of the epoxy caused by the presence of silica nano particles. KW - Nanocomposite KW - Polymer matrix composite KW - Stress-strain behavior KW - Modeling KW - Computational mechanics PY - 2016 DO - https://doi.org/http://dx.doi.org/10.1016/j.matdes.2015.10.038 SN - 0264-1275 VL - 89 SP - 950 EP - 956 PB - Elsevier AN - OPUS4-35596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Coniglio, N. A1 - Cross, Carl Edward A1 - Dörfel, Ilona A1 - Österle, Werner T1 - Phase formation in 6060/4043 aluminium weld solidification JF - Materials science and engineering A N2 - Weld metal microstructure for alloy 6060 aluminum welds, made using the gas-tungsten arc process and alloy 4043 filler metal, has been characterized using optical metallography, EPMA microprobe analysis, SEM/EBSD and STEM/EDX electron microscopy, and single-sensor differential thermal analysis (SS-DTA). In addition, alloy 6060 castings were solidified at variable cooling rates approaching that of welding, to provide a reference for comparison with weld microstructure. It was found that a major change in cast microstructure occurs at cooling rates higher than 27 K/s resulting in a structure similar to that observed in weld metal. Rapid cooling is believed to favor low temperature solidification reactions that normally would be achieved only at higher silicon content. Accordingly, additions of 4043 filler metal that increase the weld metal silicon content have only limited affect on weld solidification range and microstructure. This has direct implications regarding how 4043 filler additions improve weldability and weld quality. KW - 6060 aluminium KW - GTA weld KW - Weld metal microstructure KW - Cooling rate KW - Scanning TEM KW - Thermal analysis PY - 2009 DO - https://doi.org/10.1016/j.msea.2009.03.087 SN - 0921-5093 SN - 1873-4936 VL - 517 IS - 1-2 SP - 321 EP - 327 PB - Elsevier CY - Amsterdam AN - OPUS4-20625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bettge, Dirk A1 - Österle, Werner A1 - Ziebs, Josef T1 - Temperature dependence of additional cyclic hardening of the nickel-base superalloy IN 738 LC during out-of-phase multiaxial deformation JF - Scripta materialia PY - 1995 SN - 1359-6462 SN - 1872-8456 VL - 32 IS - 10 SP - 1601 EP - 1606 PB - Elsevier CY - Oxford AN - OPUS4-2480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -