TY - CONF A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael ED - Zoch, H.-W. ED - Lübben, T. T1 - Influences on the result quality of numerical calculation of welding-induced distortion N2 - The present investigations cover different relevant influences on the numerical calculation of welding-induced distortion. Therefore, a single-layer pulsed gas metal arc (GMA) weld of structural Steel S355J2+N with a thickness Öf5 mm is experimentally and numerically investigated. The influences of mesh density, tack-welds, and continuous cooling transformation (CCT) diagrams on welding-induced distortion are studied. The quality and quantity of These effects are clarified based on the used experimental and numerical set up. The occurring differences between the investigated cases achieve significant values. Consequently, prediction of welding-induced distortion can be improved considering the present investigations. T2 - IDE 2011 - 3rd International conference on distortion engineering 2011 CY - Bremen, Germany DA - 14.09.2011 KW - Welding simulation KW - Welding-induced distortion KW - Mesh analysis KW - Tack welding KW - Continuous cooling transformation behaviour PY - 2011 SN - 978-3-88722-724-1 SP - 277 EP - 285 AN - OPUS4-24363 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - A dynamic fiber optic strain and power change sensor N2 - A dynamic and quasi-distributed sensor principle for simultaneous measurement of length changes and optical power changes between reflection points in an optical fiber is presented. The technique is based on the incoherent optical frequency domain reflectometry (I-OFDR). Length change resolutions < 1 µm and measurement repetition rates up to 2 kHz can be achieved using standard single-mode and multi-mode optical fibers. Simultaneous length change and refractive index measurement as well as field test results showing the deformation of a masonry building under seismic load are presented. Promising fields of application for this technique are the structural health monitoring sector and chemical process control. T2 - 21st International conference on optical fibre sensors CY - Ottawa, Canada DA - 15.05.2011 KW - Distributed sensor KW - Strain sensor KW - Optical fiber sensor KW - Structural health monitoring KW - OFDR KW - Dynamic sensor PY - 2011 SN - 978-0-8194-8246-4 DO - https://doi.org/10.1117/12.884577 VL - 7753 SP - 775351-1 EP - 775351-4 AN - OPUS4-24266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter T1 - Burner for peroxy-fuels (PEROXY-BAM Burner) N2 - A new burner concept (PEROXY-BAM®) for the combustion of liquid organic peroxides (Peroxy-fuels) is presented. As peroxy-fuels are thermally unstable the design of burners for them should be accordingly modified ensuring a safe operation. It is found that 10 to 100 time less amounts of peroxy fuels are required for the same heat flux or output in comparison to hydrocarbons. Correspondingly, the fuel pump power and the volume of combustion chamber (furnace) are also reduced. As a result of less amount of fuel the emissions will also be stepped down and oxygen in the molecule helps to establish conditons like in an oxy-fuel combustion process. The advantages of using peroxy-fuels over hydrocarbons inside a model combustion chamber are also investigated with the help of CFD (Computational Fluid Dynamics) simulations. T2 - 25. Deutscher Flammentag - Verbrennung und Feuerung CY - Karlsruhe, Germany DA - 14.09.2011 KW - Organic peroxide KW - Peroxy-fuel KW - Burner concept KW - Combustion KW - Combustion chamber PY - 2011 SN - 978-3-18-092119-8 SN - 0083-5560 N1 - Serientitel: VDI-Berichte – Series title: VDI-Berichte VL - 2119 SP - 307 EP - 312 PB - VDI-Verl. AN - OPUS4-24388 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bellon, Carsten A1 - Gollwitzer, Christian A1 - Fratzscher, Daniel A1 - Ewert, Uwe A1 - Jaenisch, Gerd-Rüdiger T1 - Simulation of complex scan paths for 3D reconstruction N2 - X-ray computed tomography (CT) is a volumetric (3D) Imaging diagnostic method, well established in the medical field, and in industrial NDE as well. Developments in industrial CT aim to extent the applicability to complex structures, which do not allow the access of all directions. This are e.g. limited view, data and angle CT applications. New reconstruction algorithms are required on one side, and the accuracy has to be improved on the other side. Numerical Simulation can support such developments by providing well defined data sets for the testing of reconstruction algorithms. This approach of virtual CT is realized within the radiographic simulator aRTist, developed by BAM. The poster shows the possibilities of this tool to consider complex scan paths. Simulated data sets have been reconstructed by an versatile backprojection algorithm. T2 - International symposium on digital industrial radiology and computed tomography CY - Berlin, Germany DA - 20.06.2011 KW - Radiographie KW - Computer-Simulation KW - 3D-Rekonstruktion PY - 2011 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-243928 SN - 978-3-940283-34-4 IS - DGZfP-BB 128 (Poster 17) SP - 1 EP - 4 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-24392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geburtig, Anja A1 - Kömmling, Anja A1 - Wachtendorf, Volker ED - Reichert, T. T1 - UV-LEDs - a new tool to determine the spectral response N2 - To determine a polymer’s spectral response of photo degradation, two main methods have been established. The so-called “filter technique” uses polychromatic radiation, which is filtered by a set of various sharp cut-on filters. This procedure provides separated reading points of an activation spectrum of the investigated material. With the "spectrographic technique” a specimen is irradiated with pectrally dispersed radiation, locally quasi monochromatically, and the local property changes.are related to the radiant exposure at the respective wavelengths. A third method, the irradiation of specimens with quasi monochromatic radiation behind interference filters, is rarely used. These methods have advantages and disadvantages and therefore, there are limits for conclusions from these spectral data. Concerning the quasi monochromatic Irradiation of specimens the development of new UV radiation sources looks promising. With the rapid development of inexpensive UV Light-emitting diodes (LEDs), new : sources of nearly monochromatic radiation in the UV ränge are available, even down to about 250 nm. To determine the spectral response, the use of such UV-LEDs in TO-18 ) and TO-39 metal cases combines the advantages of low cost and energy efficiency, stable spectral irradiance, temperature.and humidity control, larger specimen areas, and an easy and stable analysis. Combinations of different UV LEDs are also discussed as replacement for xenon arc ' radiation sources, see patent application EP01528388A1. T2 - 5th European weathering symposium - Natural and artificial ageing of polymers CY - Lisbon, Portugal DA - 21.09.2011 KW - UV resistance KW - Weathering KW - Spectral sensitivity KW - Action spectrum KW - UV-LEDs PY - 2011 SN - 978-3-9813136-2-8 N1 - Serientitel: CEEES Publication – Series title: CEEES Publication IS - 15 SP - 77 EP - 86 PB - GUS (Gesellschaft für Umweltsimulation) CY - Pfinztal AN - OPUS4-24396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Shcheglov, Pavel A1 - Gumenyuk, Andrey A1 - Gornushkin, Igor B. A1 - Rethmeier, Michael T1 - Experimental investigation of the laser-plume interaction during high power fiber laser welding N2 - The effect of the well-known plasma absorption and refraction in CO2-laser metal welding plumes is in case of high power solid state laser welding negligibly small. By contrast, the diffraction effects of shorter wavelength laser radiation are considerable. According to the results of preliminary studies, the fine condensed metal particles in the welding plume can lead to essential worsening of the laser beam quality. This work is devoted to the investigation of the lasermatter interaction during up to 20 kW ytterbium fiber laser welding of thick mild steel plates. The plume attenuation of a probe 1.3 µm wavelength diode laser beam as well as of continuous radiation in 250-600 nm wavelength range was measured during welding with and without Ar shielding gas supply. The measured results allow it to calculate average size and concentration of fine condensed metal particles in different plume areas using the multi-wavelength method and the Mie scattering theory. The plume temperature, which determines the condensation conditions, was measured by means of Fe I atom spectral line emission registration. The obtained results can be also of interest for remote metal treatment with high-power fiber or disc lasers. T2 - 30th ICALEO - International congress on applications of lasers & electro-optics CY - Orlando, FL, USA DA - 2011-10-23 PY - 2011 SN - 978-0-912035-94-9 SP - Paper 1606, 637 EP - 645 AN - OPUS4-24921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Perrone, C. A1 - Müller, Urs A1 - Gardei, André A1 - Ziegert, C. ED - Drochytka, R. ED - Bohus, S. T1 - Structural performances of earthen building materials. A comparison between different typologies N2 - Traditional construction techniques utilizing earthen materials are often seen as inferior compared to modern ways of building. Structural earthen elements are perceived as vulnerable towards environmental influences (moisture, frost) and in particular towards the load scenarios during earthquakes. In comparison to the recent advances in research on stone and brick masonry, knowledge on the structural performance of earthen building construction is limited and scattered. Consequently the confidence in the performance of these earthen buildings constructed in the traditional techniques during earthquakes is fairly low. The research presented here aims to make a comparison of mechanical behavior between different earth masonry material typologies, consisting of earth block masonry, rammed earth and cob. The paper has been developed in the framework of a larger research program called NIKER. BAM and other seventeen research partners from the Mediterrean area are jointly involved to develop and validate innovative materials and technologies for the systemic improvement of the seismic behavior of Cultural Heritage assets T2 - 2nd WTA - Internaitonal PhD Symposium - Building materials and buidling technology to preserve the built heritage CY - Brno, Czech Republic DA - 06.10.2011 KW - Earth masonry KW - Material test KW - Mechanical behavior KW - Cultural heritage PY - 2011 SN - 978-3-937066-21-9 SN - 0947-6830 N1 - Serientitel: WTA-Schriftenreihe – Series title: WTA-Schriftenreihe VL - 2 / Part 2 IS - 36 SP - 86 EP - 94 PB - WTA Publications AN - OPUS4-24928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Molnarne, Maria A1 - Wilrich, Cordula A1 - Holtappels, Kai T1 - Chemically unstable gases and gas mixtures - new categories in the GHS N2 - In connection with the use of chemically unstable gases (especially acetylene and ethylene oxide) accidents keep on happening - amongst them also quite serious ones. These gases are known to be chemically unstable. A chemically unstable sas is a flammable gas that is able to react exolosivelv even in the absence of air or oxveen. The investigation of accidents showed that the Chemical instability of flammable gases played an important role in the severity of accidents. Therefore, this hazardous property was included in the global harmonizatiön of the Classification of Chemicals. The Classification of chemically unstable flammable gases and mixtures is an amendment to Chapter 2.2 “Flammable gases” of the UN Globally Harmonized System of Classification and Labelling of Chemicals (GHS), because most chemically unstable gases are flammable as well. The proposal to add them to the GHS originated from the experts of an informal working group of the UN Sub-Committee of Expert on the GHS (UNSCEGHS) headed by BAM, Germany. The UNSCEGHS has decided to include it in the Fourth Revised Edition of the GHS. The respective method for determining whether a gas is chemically unstable or not, is included in the UN Manual of Tests and Criteria. This paper presents some experimental investigations of these gases, the test methods, examples of new classifications and results from CHEMSAFE T2 - 14th Annual symposium, Mary Kay O´Connor process safety center - Beyond regulatory compliance: making safety second nature CY - College Station, TX, USA DA - 25.10.2011 KW - Chemically unstable gases KW - GHS KW - Chemisch instabile Gase PY - 2011 SP - 871 EP - 882 AN - OPUS4-24913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Urs A1 - Schlegel, Moritz-Caspar A1 - Emmerling, Franziska T1 - Advanced techniques for studying damage mechanisms of cementitious matrices affected by sulfate attack N2 - Cementitious materials, in particular concrete, are durable materials if prepared appropriately and the Service life of concrete structures is now often required to last 120 years or more. Concrete durability depends strongly on intrinsic (e.g. composition, porosity) and exterior factors (e.g. moisture condition and composition, frost cycles, load pattem). Deleterious actions leading to concrete degradation are often created by the environment. Extemal sulfate attack is one of the more spectacular damage scenarios for concrete structures caused by the ingress of sulfate ions into the pore System of the material and successive formation of expanding phases. Though in recent years well studied there are still many questions remaining conceming the mechanisms of sulfate attack. In particular over the last ten years, with the increased utilization of blended cements, new questions arose concerning the sulfate resistance of those binder Systems. In the presented study therefore a method was developed to analyze the changes of the phase composition within the micro structure due to sulfate attack. The analytical method was based on pX-Ray diffraction (pXRD) using Synchrotron radiation in Debye-Scherrer (transmission) geometry. The spatial resolution of the method is ca. 10 pm and allows the characterization of phase transformations in the wake of damaging processes in more detail compared to other techniques. Furthermore, the experimental setup provides the possibility for analyzing the phase assemblage of a given sample without destroying the micro structure. This is possible because the specimens for phase analysis consists of thick sections, which can be used for further microscopic analysis of the micro structure and micro chemistry (e.g. by SEM-EDX). Samples containing supplementary cementitious materials were measured in comparison and to reconstruct the influence of the degradation process in detail. Additionally, reaction ffonts within the samples were localized by micro x-ray fluorescence analysis (MXRF). T2 - EMABM 2011 - 13th Euroseminar on microscopy applied to building materials CY - Ljubljana, Slovenia DA - 14.06.2011 KW - Sulfate attack KW - Concrete KW - Synchrotron KW - XRD KW - Phase analysis PY - 2011 SN - 978-961-90366-7-9 SP - 1 EP - 9 AN - OPUS4-24878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rack, T. A1 - Zabler, S. A1 - Rack, C. A1 - Stiller, M. A1 - Riesemeier, Heinrich A1 - Cecilia, A. A1 - Nelson, K. T1 - Coherent synchrotron-based micro-imaging employed for studies of micro-gap formation in dental implants N2 - Biocompatible materials such as titanium are regularly applied in oral surgery. Titanium-based implants for the replacement of missing teeth demand a high mechanical precision in order to minimize micro-bacterial leakage, especially when two-piece concepts are used. Synchrotron-based hard x-ray radiography, unlike conventional laboratory radiography, allows high spatial resolution in combination with high contrast even when micro-sized features in such highly attenuating objects are visualized. Therefore, micro-gap formation at interfaces in two-piece dental implants with the sample under different mechanical loads can be studied. We show the existence of micro-gaps in implants with conical connections and study the mechanical behavior of the mating zone of conical implants during loading. The micro-gap is a potential source of implant failure, i.e., bacterial leakage, which can be a stimulus for an inflammatory process. T2 - 10th International conference on X-ray microscopy CY - Chicago, Illinois, USA DA - 15.08.2010 KW - X-ray imaging KW - Dental implants KW - Digital radiography KW - Implant-abutment interface KW - Synchrotron radiation KW - X-ray phase contrast PY - 2011 SN - 978-0-7354-0925-5 DO - https://doi.org/10.1063/1.3625398 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings VL - 1365 SP - 445 EP - 448 AN - OPUS4-25347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter T1 - CFD simulation to predict the performance of a peroxy-fuel burner N2 - new burner concept for peroxy-fuels is proposed. The performance of the proposed peroxy-fuel burner is predicted with the help of Computational Fluid Dynamics (CFD) simulation. It is found that peroxy-fuel burner not only requires considerable less amount of fuel for the same output/power but also at the same time the overall size of the processing unit can be reduced. As peroxy-fuels contain oxygen atoms within the molecule itself a similar to oxy-fuel combustion environment is created without even supplying pure oxygen. CFD simulations also support the above facts and demonstrate the existence of less favorable conditions to form NOx. T2 - 38th National conference on fluid mechanics and fluid power CY - Bhopal, India DA - 15.12.2011 KW - Burner KW - Peroxy-fuels KW - Performance KW - CFD simulation PY - 2011 IS - Paper HT-07 SP - 1 EP - 6 AN - OPUS4-25380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sojref, Regine A1 - Güther, Wolfgang T1 - Solvent-based redispersion of fine (<200 nm) corundum powder pre-milled in water T2 - ECerS XII - 12th Conference of the European ceramic society CY - Stockholm, Sweden DA - 2011-06-19 KW - Powder processing KW - Redispersion KW - Tape casting KW - Corundum KW - Hydrophobization PY - 2011 SP - 1 EP - 4 AN - OPUS4-25379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Helm, C. A1 - Eichler, Thorsten A1 - Raupach, M. A1 - Isecke, Bernd T1 - Time dependency of current and potential distribution during the cathodic protection of RC structures N2 - Cathodic protection (CP) is a common method for rehabilitation of reinforced concrete structures suffering from Chloride induced corrosion. A sufficient protection of the corroding rebar can be ensured by use of several protection criteria. The use of these assessment criteria, in particular the so called 100 mV-criterion, can lead to erroneous resuits for certain unconventional arrangements of rebar and cp anode. Therefore a joint research project of the Institute for Building Materials Research, RWTH-Aachen University, Germany, (ibac) and the Federal Institute for Materials Research and Testing, Berlin, Germany, (BAM) has been set up to determine the applicability of CP under arbitrary geometrical conditions. A special focus was set on the applicability of surface applied anode Systems for protection of the reinforcement of structures opposite to the accessible side (e.g. outer side of tunnel Shell, Bridge deck protected from inside a box girder) In this paper, the impact of the time dependent changes of the Polarisation behaviour of the rebar on the current and potential distribution is shown by means of parametric studies using the FEM method. T2 - EUROCORR 2011 - Developing solutions for the global challenge CY - Stockholm, Sweden DA - 04.09.2011 KW - Cathodic protection KW - Long time effects of cathodic polarisation KW - FEM-modelling KW - Steel in concrete PY - 2011 SP - 1 EP - 11 AN - OPUS4-25326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Chinta, P.K. A1 - Prager, Jens T1 - Computationally efficient ray tracing algorithm for simulation of transducer fields in anisotropic materials N2 - This contribution describes a computationally efficient ray tracing algorithm for evaluating transducer generated ultrasonic wave fields in anisotropic materials such as austenitic cladded and austenitic weld components. According to this algorithm, ray paths are traced during its propagation through various layers of the material and at each Interface the problem of reflection and transmission is solved. The presented algorithm evaluates the transducer generated ultrasonic fields accurately by taking in to account the directivity, divergence, density of rays, phase relations as well as transmission coefficients. The ray tracing algorithm is able to calculate the ultrasonic wave fields generated by a point source as well as a finite dimension transducer. The simulation results are compared quantitatively with the results obtained from Elastodynamic Finite Integration Technique (EFIT) on several configurations generally occuring in the ultrasonic non destructive testing of anisotropic materials. The excellent agreement between both models confirms the validity of the presented ray tracing algorithm. Finally, the ray tracing model results are also validated by means of experiments. T2 - NDE 2011 - National seminar & exhibition on non-destructive evaluation CY - Chennai, India DA - 08.12.2011 KW - Ultrasonic sound field KW - Ray tracing KW - Directivity KW - Anisotropy KW - Austenitic weld PY - 2011 SP - 482 EP - 486 AN - OPUS4-25329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pistol, Klaus A1 - Weise, Frank A1 - Meng, Birgit A1 - Schneider, U. ED - Koenders, E.A.B. ED - Dehn, F. T1 - The mode of action of polypropylene fibres in high performance concrete at high temperatures N2 - It has been shown in fire tests that polypropylene fibres reduce or avoid explosive spalling of high performance concrete. In the critical temperature ränge up to 300 °C the permeability of HPC increases by using polypropylene fibre. Due to this the water vapour, which is the main reason for explosive spalling, can escape. There exist different theories in the literature conceming the micro structural mechanisms, which cause an increase in the permeability. Within the framework of an internal research project at BAM an innovative methodology was developed for experimental verifying of existing theories and to get new insights into this problem The methodology used is unique and has been undertaken here for the first time. This consists of the combination of acoustic emission and ultrasonic measurement during temperature loading and the non-destructive micro structural analysis of cooled down samples with the aid of micro X-ray computed tomography. For the validation of the nondestructive test methods scanning electron microscopic images of prepared samples were undertaken. The results show that due to the thermal decomposition of the polypropylene fibres micro canals emerge. These are connected due to a simultaneous micro cack formation. T2 - 2nd International RILEM workshop on concrete spalling due to fire exposure CY - Delft, The Netherlands DA - 05.10.2011 KW - Spalling KW - Polypropylene fibres KW - High performance concrete KW - Acoustic emission KW - X-ray computed tomography KW - Scanning electron microscopy PY - 2011 SN - 978-2-35158-118-6 SP - 289 EP - 296 PB - RILEM Publications AN - OPUS4-24835 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Miccoli, Lorenzo A1 - Perrone, C. A1 - Müller, Urs A1 - Gardei, André A1 - Ziegert, C. T1 - Comparison of mechanical behavior of different earth masonry typologies in cultural heritage N2 - The paper has been developed in the framework of a larger EC‐research program called NIKER, in which BAM and other seventeen research partners from the Mediterrean area are jointly involved. It aims to develop and validate innovative materials and technologies for the systemic improvement of the seismic behavior of Cultural Heritage assets. The death tolls brought about by recent catastrophes in developing countries where many inhabitants lived in earthen dwellings (Gujarat, India 2001, Bam, Iran 2003 and Concepción, Chile 2010 Earthquakes, Tamil Nadu 2004 Tsunami) have brought about research studies aimed at improving earth construction in terms of strength, seismic resistance and speed of construction. In comparison to the recent advances in research on stone and brick masonry, knowledge on the material properties and failure mechanisms of earthen Building construction is limited and scattered. The research presented here by aims making a comparison of mechanical behaviour between different earth masonry material typologies, consisting of earth block masonry, rammed earth and cob. T2 - WCCE-ECCE-TCCE Joint conference 2 - Seismic protection of cultural heritage CY - Antalya, Turkey DA - 31.10.2011 KW - Earth masonry KW - Material test KW - Cultural heritage KW - Seismic resistance PY - 2011 SN - 978-605-01-0188-1 SP - 25 EP - 36 AN - OPUS4-24836 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ramge, Peter A1 - Kühne, Hans-Carsten A1 - Meng, Birgit ED - Drochytka, R. ED - Bohus, S. T1 - Natural stone reprofiling in cultural heritage with modular repair mortars N2 - Whenever the preservation of original substance obtains priority in a restoration task, reprofiling techniques using repair mortars are a welcome solution. For ordinary concrete repair aesthetic aspects are of minor importance whereas for the restoration of natural stone elements they come to the fore. Especially for listed buildings and monuments, historico-cultural and aesthetical interests become the ruling Parameters for planning and execution of restoration tasks. Nevertheless the technical and constructive requirements have to be considered and deterioration processes have to be understood to ensure sustainability and durability of the repair task. Due o differences in the Chemical and mineralogical composition, natural stone provides a vast variety of texture and colour. Also the range of different mechanical and durability related properties is far wider than found with concrete for example. A research project dealing with the development of a modular repair mortar System for natural stone is currently set up at the BAM. To provide the conservator with the best possible options to match colour, texture and technical requirements, the System will be setup on a modular basis. Several different binder Systems on basis of cement, lime and sodium Silicate as well as polymer based Systems are planned, which can be combined with different aggregate compositions and different pigments. To evaluate the mortar performance, test procedures will be defined for tests on mortar samples and on composite specimens. In the paper the experimental Programme will be explained and first results will be presented and discussed. T2 - 2nd WTA - Internaitonal PhD Symposium - Building materials and buidling technology to preserve the built heritage CY - Brno, Czech Republic DA - 06.10.2011 PY - 2011 SN - 978-3-937066-21-9 SN - 0947-6830 N1 - Serientitel: WTA-Schriftenreihe – Series title: WTA-Schriftenreihe IS - 36 SP - 208 EP - 216 PB - WTA Publications AN - OPUS4-24837 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chabrelie, A. A1 - Müller, Urs A1 - Scrivener, K.L. ED - Palomo, Á. ED - Zaragoza, A. ED - Agüí, J. C. L. T1 - Mechanisms of degradation of concrete by external sufate ions under laboratory and field conditions N2 - The durability of concrete is a major challenge for the construction, which devotes one third to one half of its annual investment to building maintenance. The lack of fieid data regarding concrete durability, especially in the case of exposure to Sulfate ions (“sulfate attack”) makes it dijficult to determine the appropriate fest methods andperformance criteria. Additionally, the increased use of sustainable blends (cement with mineral admixtures, typically slag from the iron industiy) suffers from a lack of experience regarding their long-term performance. Most results for sulfate resistance are derived from accelerated laboratoiy tests xvhere performance criteria are based only on macroscopic properties, especially expansion. To fill this gap and better widerstand the mechanisms of sulfate attack under real conditions, a parallel study of laboratoiy micro-concrete and fieid concrete samples under sulfate exposure was undertaken, focussing on microstructural changes in addition to the conventional macroscopic characterisation. Four exposure regimes were designed in the laboratoiy: full immersion (ponding), pH-control, semi-immersion and wet/diy cycles. Pure Portland blends and slag blends witli high level of slag replacement (70 wt.-%) were investigated. The exposure regime has been found to play a major role in the damage process. In ponding conditions, the damage process takes place in three stages characterised by a first period of induction, followed by surface damage thatfinally extends to the bulle of the material. Paradoxically, the w/c-ratio does not seem to have much impact on the ionic transport phenomena but might be more decisive in the microstructure mechanical strength against local stresses. The slag blends, considered as sulfate resistant in ponding exposure, revealed badperformances under wet/diy cycles. This beliaviour was attributed to poor proper physical resistance of the slag hydrates against diying. The fieid concretes selected for the comparison with the laboratoiy cases were partially buried in a sulfate-enriched soil in Argentina. A pure Portland blend and a slag blends with high level of slag replacement (80 wt.-%) were investigated. The submerged part of the samples could be compared to the laboratoiy ponding exposure, wliile the upper layer of the samples subjected to weathering could be compared to the laboratoiy wet/diy cycles exposure. The fieid obsen’ations tend to confirm the laboratoiy results and validate the fest settings. It has been underlined that a direct relationship between damage (e.g.; cracking/expansion) andphase assemblage was not evident. However, the study highlights that sulfate combination with the hydrates of the cement (e.g.; C-S-H) and with those of the slag would play a rote in the initiation of the expansion, which would be attributed to a swelling of the hydrates or to the precipitation offine ettringite after the Saturation level in sulfate of the hydrates has been reached. T2 - 13th International congress on the chemistry of cement - XIII ICCC CY - Madrid, Spain DA - 03.07.2011 KW - Sulfate attack KW - Exposure conditions KW - Concrete KW - Laboratory test KW - Field KW - Phase assemblage KW - Microstructure KW - XRD KW - SEM KW - SCM KW - Slag PY - 2011 SN - 978-84-7292-400-0 SP - 1 EP - 14 CY - Madrid AN - OPUS4-24810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pereira, F. A1 - Pistol, Klaus A1 - Korzen, Manfred A1 - Weise, Frank A1 - Pimienta, P. A1 - Carré, H. A1 - Huismann, Sven ED - Koenders, E.A.B. ED - Dehn, F. T1 - Monitoring of fire damage processes in concrete by pore pressure and acoustic emission measurements N2 - This paper presents the combined use of acoustic emission (AE), gas pore pressure and temperature measurements (PT). The simultaneous application of both techniques represents a new methodology in the context of fire spalling and contributes to a better understanding of the mechanisms of fire spalling, particular with regard to the interaction of micro cracking and pore pressure evolution. The study presents fire tests on normal strength concrete specimens with and without reinforcement at ISO Standard fire and at hydrocarbon (HC) fire. Supported by AE-analysis, it can be shown that due to the higher heating rate of the HC-fire in comparison to the ISO Standard fire the damage processes inside the concrete during the exposure are increased combined with augmenting the concrete permeability. As a consequence lower pore pressures were measured. However, despite the lower pore pressures, explosive spalling was observed. T2 - 2nd International RILEM workshop on concrete spalling due to fire exposure CY - Delft, The Netherlands DA - 05.10.2011 KW - Ordinary concrete KW - High temperature KW - Gas pore pressure KW - Acoustic emission KW - Spalling PY - 2011 SN - 978-2-35158-118-6 SP - 69 EP - 77 PB - RILEM Publications AN - OPUS4-24818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gluth, Gregor A1 - Taffese, W.Z. A1 - Kumaran, G.S. A1 - Uzoegbo, H.C. A1 - Kühne, Hans-Carsten T1 - Inorganic binder systems for innovative panel technology in East Africa - possible ways to produce building materials from local raw materials N2 - Many African countries face serious problems associated with the rapid growth of urban Population and the resulting demand for affordable building materials. In search for appropriate Solutions to improve the Situation, the “LightSHIP” project was initiated, whose aims were to identify the required product specifications, to evaluate possible approaches and ultimately to develop new Building materials for East Africa. It was concluded that these materials should be produced in Africa mainiy from local raw materials; prefabricated, easily transportable construction elements are to be preferred. It is therefore reasonable to focus on artificial stones and partition boards. To be Independent of imported cement, it is suggested to make use of volcanic rocks, which are abundant in East African countries, for lime-pozzoian binders and geopolymers in the production of these construction elements. Future research activities should thus concentrate on assessment of the applicability of available volcanic rocks, the influence of their properties on the resulting binders and the design of appropriate binder-reinforcement-filler Systems. T2 - Workshop cement and concrete for Africa CY - Berlin, Germany DA - 17.08.2011 KW - Building materials KW - East Africa KW - Volcanic rock KW - Natural pozzolans KW - Lime-pozzolan binders KW - Geopolymers PY - 2011 SN - 978-3-9814281-4-8 SP - 32 EP - 36 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-24779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -