TY - CONF A1 - Böhning, Martin A1 - Yin, Huajie A1 - Schönhals, Andreas T1 - Characterization of high-performance membrane polymers for gas separation using broadband dielectric spectroscopy N2 - In recent years superglassy polymers exhibiting intrinsic microporosity established a new perspective for a number of applications, especially for gas separation membranes as These polymers Combine extremely high permeabilities with attractive selectivities. The essential factor governing the structure Formation in the solid film or layer is either a contorted rigid Backbone (polymers of intrinsic microporosity - PIMs) or extremely bulky side groups (polynorbornenes and polytricyclonenenes). For a deeper understanding of both types of such high-Performance polymers for gas separation membranes and their further development broadband dielectric spectroscopy (BDS) can provide a substantial contribution. BDS addresses molecular relaxations characterizing the dynamics of the solid polymer as a major factor determining the gas transport properties but also the physical aging behavior which is an essential issue for such polymers. BDS is applied on PIMs where fluctuations of molecular dipoles connected to the backbone can be directly monitored. Furthermore, also polynorbornenes were investigated which carry no dipole moment in their repeat unit - the high resolution of modern equipment allows for the detailed analysis also for very small dielectric losses originating from partially oxidized moieties or marginal catalyst residues. Additionally, from interfacial polarization phenomena, such as Maxwell-Wagner-Sillars (MWS) polarization due to blocking of charge carriers at internal interfacial boundaries on a mesoscopic length scale, valuable information on the intrinsic microporosity and its changes induced by physical aging can be obtained. Finally, also conductivity can be characterized in detail in such polymeric systems revealing contributions of interactions of aromatic moieties (π-π-stacking) or the drift motion of charge carriers. These features also determine the structure formation in the solid state. T2 - 257th ACS National Meeting - Symposium "Transport in Polymer Membranes" CY - Orlando, FL, USA DA - 31.03.2019 KW - polymers KW - gas separation membranes KW - polynorbornenes KW - polymers of intrinsic microporosity KW - dielectric spectroscopy KW - molecular mobility PY - 2019 AN - OPUS4-48142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Frei, Vivian A1 - Thiele, Marc A1 - Pirskawetz, Stephan A1 - Meng, Birgit A1 - Rogge, Andreas T1 - Characterizing the Fatigue Behavior of High-Performance Concrete for Wind Energy Structures N2 - Severe mechanical fatigue conditions for worldwide proliferating windfarms are a Major challenge for high-performance concrete in towers, connecting joints and foundations of wind turbines. High-performance concrete offers potential for the application in offshore windfarms, not only regarding its good mechanical, but also chemical resistivity due to low diffusivity in the highly densified microstructure. For a more reliable fatigue assessment, monitoring based on nondestructive testing can be a valuable complement to design rules. Both approaches demand reliable experimental data, information about scalability and the development of standardized testing methods. This article presents results of an ongoing research program of BAM (Bundesanstalt für Materialforschung und -prüfung), which is a part of a joint national project (WinConFat) funded by the German Federal Ministry for Economic Affairs and Energy. The subproject implemented by BAM examines the fatigue behavior in dependence of size and slenderness for varying concrete strength at different stress levels. Besides fatigue strength, nondestructive testing is carried out additionally. Methods used are strain measurement and ultrasonic testing. The change of strain, stiffness and ultrasonic pulse velocity in the fatigue process is discussed. Results disclose a deeper insight into the damage process under cyclic loading of high-performance concrete and contribute to improve nondestructive monitoring. T2 - LORCENIS - Long Lasting Reinforced Concrete for Energy Infrastructue under Severe Operating Conditions CY - Gent, Belgium DA - 10.09.2019 KW - Compressive Cyclic loading KW - Fatigue KW - High-strength concrete KW - Non destructive testing KW - Ultrasonic testing PY - 2019 AN - OPUS4-49474 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gnutzmann, Tanja A1 - Hahn, S.-K. T1 - Charakterisierung von Entstehungsbränden N2 - Im Rahmen des BMBF geförderten Verbundprojekts „TEBRAS – Konzepte und Techniken zur Branderkennung, Bekämpfung und Selbstrettung in der frühesten Brandphase“ arbeiten sechs Partner aus der Wissenschaft und der Industrie gemeinsam an Lösungen zur schnelleren Branddetektion und Bekämpfung. Ausgehend von Brandschadenstatistiken werden zunächst häufige Brandentstehungsszenarien, Brandursachen und die beteiligten Objekte und Materialien identifiziert. Auf dieser Basis wird ein Testszenario entwickelt, das es erlaubt, einen repräsentativen Entstehungsbrand unter definierten Testbedingungen zu untersuchen. Typische Brandkenngrößen werden anhand der ausgewählten Referenzszenarios des Schwelbrands einer Mischbrandkrippe vorgestellt. Der Fokus liegt dabei auf den freigesetzten Brandgasen. T2 - vfdb Jahresfachtagung 2019 CY - Ulm, Germany DA - 27.5.2019 KW - Detektion PY - 2019 AN - OPUS4-48663 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino A1 - Hlaváček, Petr A1 - Gluth, Gregor A1 - Mietz, Jürgen A1 - Reinemann, S. T1 - Chloride induced corrosion of steel reinforcement in alkali activated fly ash mortars N2 - Electrochemical investigations to determine the chloride treshhold to induce pitting corrosion at steel reninforcement. T2 - Eurocorr 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Corrosion KW - Concrete PY - 2019 AN - OPUS4-48935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Unger, Jörg F. A1 - Robens-Radermacher, Annika T1 - Combination of model reduction and adaptive subset simulation for structural reliability problems N2 - A safe and robust design is a key criterion when building a structure or a component. Ensuring this criterion can either be performed by fullfilling prescribed safety margins, or by using a full probabilistic approach with a computation of the failure probability. The latter approach is particularly well suited for complex Problems with an interaction of different physical penomena that can be described in a numerical model. The bottleneck in this approach is the computational effort. Sampling methods such as Markov chain Monte Carlo methods are often used to evaluate the system reliability. Due to small failure probabilities (e.g. 10^6) and complex physical models with already and extensive computational effort for a single set of parameters, these methods a prohibitively expensive. The focus of this contribution is to demonstrate the advantages of combining model reduction techniques within the concept a variance reducing adaptive sampling procedures. In the developed method, a modification of the adaptive subset simulation based on Papaioannou et al. 2015 is used and coupled with a limit state function based on Proper Generalized Decomposition (PGD) (Chinesta et al. 2011). In the subset simulation the failure probability is expressed as a product of larger conditional failure probabilities. The intermediate failure events are chosen as a decreasing sequence. Instead of solving each conditional probability with a Markov chain approach, an importance sampling approach is used. It is be shown that the accuracy of the estimation depends mainly on the number of samples in the last sub-problem. For model reduction, the PGD approach is used to solve the structural problem a priori for a given Parameter space (physical space plus all random parameters). The PGD approach results in an approximation of the problem output within a prescribed range of all input Parameters (load factor, material properties, ..). The approximation of the solution by a separated form allows an evaluation of the limit state function within the sampling algorithm with almost no cost. This coupled PGD – adaptive subset Simulation approach is used to estimate the failure probability of examples with different complexity. The convergence, the error propagation as well as the reduction in computational time is discussed. T2 - UNCECOMP 3rd International Conference on Uncertainty Quantification in Computational Sciences and Engineering CY - Crete, Greece DA - 26.06.2019 KW - Model reduction KW - Reliability analysis KW - Simulation KW - Finite Elemente Method (FEM) KW - Proper Generalized Decomposition (PGD) PY - 2019 AN - OPUS4-48479 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rütter, H. A1 - Le, Quynh Hoa A1 - Knauer, S. A1 - Bettge, Dirk A1 - Kranzmann, Axel T1 - Combining CO2 streams from different emitters ‐ a challenge for pipeline transportation N2 - Depending on the CO2 generating and the capture process as well as on consecutive purification steps applied, CO2 streams from different emitters may differ in their composition. When CO2 streams with different compositions are fed into a larger pipeline network, there are several aspects that must be considered: i) chemical reactions, such as acid formation, may occur within the joint CO2 stream; ii) there may be a variation of mass flow rate and CO2 stream composition within the pipeline network if the feed-in behavior of different CO2 sources changes with time. Potential impacts of changing CO2 stream compositions and mass flow rates in CCS cluster systems were investigated in the collaborative project "CLUSTER" (see also www.bgr.bund.de/CLUSTER). In this presentation, we focus on the experimental investigations of formation and condensation of strong acids and their impacts on the corrosion of pipeline steels. When SO2, NO2, O2 and H2O are present simultaneously in CO2 streams chemical cross-reactions may occur leading to the formation of strong acids such as sulfuric and nitric acid. To prevent this acid formation the concentration of at least one of these four impurities must be kept very low (e.g., Rütters et al., 2016). At temperatures below the acid dew point temperature, acids will condense, e.g., on pipeline steel surfaces. In turn, these acid condensates may trigger steel corrosion. To better understand the process of acid formation and condensation and its implications for steel corrosion, exposure tests were performed on pipeline steel X70 in dense CO2 with varying SO2, NO2 and O2 concentration under high pressure and at 278 K in an observable autoclave, in which water was added as droplets or as vapor. Further, electrochemical tests were carried out with X70 specimens immersed in 500 mL CO2-saturated synthetic condensate solution or in droplets of the same solution on the specimen’s surface. Depending on impurity concentrations in the CO2 streams, condensates consisting of different relative amounts of nitric and sulfuric acid were formed. In condensates containing both nitric and sulfuric acid, corrosion rates were higher than the sum of those of the individual acids. In addition, corrosion products and forms depended on the condensate composition. Investigations of water droplets on steel surfaces in impurity-containing dense-phase CO2 revealed the diffusion of SO2 and NO2, followed by cross-reactions forming corresponding acids. An increase in droplet size (from 1 to 5 µl) lead to higher corrosion rates. However, in comparison to measurements in bulk solution, corrosion reactions in droplets resulted in thick, high-resistance corrosion products and observed droplet corrosion rates were significantly lower. In addition, the possibility of acid droplet formation and growth in impure liquid CO2 is influenced by the wetting behavior of the acid droplet on the steel surface. Thus, the contact angle between a water droplet and the surface steel specimens in a CO2 atmosphere was investigated in a high pressure view cell following the sessile drop method. The contact angle wasand found to be larger at higher CO2 pressures (studied from 5 to 20 MPa) and at higher temperatures (e.g. 278 K to 333 K). Further, measured contact angles were larger on rough than on smooth metal surfaces. In addition, acid formation reduced the contact angle, i.e. lead to better wetting, thereby stimulating condensation that was followed by a corrosion process. These detailed insights on the complex interplay of acid formation, condensation, wetting behavior and corrosion allow a better assessment of material suitability for pipeline transportation of impure CO2 streams T2 - TCCS-10 The 10th Trondheim Conference on Carbon Capture, Transport and Storage CY - Trondheim, Norway DA - 17.06.2019 KW - arbon capture KW - utilization, and storage (CCUS) technology KW - corrosion KW - condensate KW - electrochemical characterization KW - pitting corrosion KW - impurities KW - carbon steel PY - 2019 UR - https://www.sintef.no/globalassets/project/tccs-10/dokumenter/tccs10---book-of-abstracts.pdf AN - OPUS4-48369 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Geißler, Peter A1 - Schwarz, Johannes A1 - Cuéllar, Pablo A1 - Hüsken, Götz A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten A1 - Morrone, C. T1 - Compaction grouting to improve the pile bearing capacity in non-cohesive soil N2 - The increasing use of renewable energies leads to a constant search for optimised foundation concepts aiming to reduce the costs for offshore wind turbines. In an ongoing research project, we are developing a design approach for typical offshore driven piles based on the application of injections by compaction grouting directly at the pile shaft. Compaction grouting as a ground improvement technique has been used widely as a countermeasure against liquefaction, settlement and low bearing capacity of soil under new or already existing structures. It is performed by forcing highly viscous grout into the soil to displace and compact the surrounding soil without fracturing or penetrating it. Regarding this injection method, this paper gives a brief overview about general aspects such as appropriate soil characteristics and grouting parameters, grouting equipment and fields of application particularly in the offshore sector. This indicates the ability of our optimisation concept to provide an economic alternative to larger pile dimensions and a retrofitting technique, which is available during the entire lifetime of the foundation and can be deployed only in case of necessity (e.g. excessive deformations or insufficient structural stiffness after an extreme load event). Besides the material feasibility and the constructive realisation of this improvement measure, the development of a corresponding verification concept is crucial in order to ensure the safety and durability of the retrofitted offshore piles. Here we will examine various verification concepts with their respective limitations in the framework of the limit state design. Furthermore, we will present the experimental findings from field tests in sand indicating the advantages of several local injections by compaction grouting for the enhancement of the load bearing behaviour of pile foundations. The test results were also used to validate a numerical model, developed with the finite element program PLAXIS, aiming to predict the expected bearing capacity for different injection scenarios (e.g. grout volume, location of injection points) along a pile shaft. T2 - Twenty-ninth International Ocean and Polar Engineering Conference CY - Honolulu, HI, USA DA - 16.06.2019 KW - Offshore Pile Foundation KW - Compaction Grouting KW - Grout KW - Injection Sequence KW - Tensile Capacity PY - 2019 AN - OPUS4-48504 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hüsken, Götz A1 - Shamsuddoha, Md A1 - Thiele, Marc A1 - Baeßler, Matthias A1 - Kühne, Hans-Carsten T1 - Comparison of cracks formed in scaled grouted connection of offshore energy structures under static and cyclic loads N2 - Global energy consumption will increase in the future necessitating both fossil fuels and renewable energy choices - especially wind energy. Such high energy demand requires installation of offshore energy structures, rigs, platforms and towers, which are susceptible to adverse environmental conditions along with maintenances. Due to their large size and remote locations, cylindrical grouted joints are often adopted between substructure and foundation in these offshore platforms and wind structures such as monopiles. However, these connections are composite structures with exterior sleeve, interior pile and infill mortar. Degradation and settlements were reported inside similar connections, which were installed in last three decades. Besides, grouting in the offshore sites were proven difficult to obtain ideal load bearing capacity. In-situ loading conditions were also found to be affecting the failure mechanism inside such connections. This study aims at characterizing the nature of cracks generated in these grouted connections under both static and cyclic loading. Scaled grouted joints were manufactured using a novel reusable mold, and connections were loaded to failure to visualize the main failure patterns. An assessment between failure under these two types of load is drawn along with comparison to previously available literature. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Grouted connection KW - Crack formation KW - Crack pattern KW - Static load KW - Cyclic load PY - 2019 AN - OPUS4-48797 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiele, Marc A1 - Hille, Falk A1 - Makris, Ruben T1 - Comparison of fatigue crack detection methods for high-cyclic loaded steel structures N2 - At present, to produce renewable energy offshore wind farms play an important role. The available space combined with the more valuable wind conditions make offshore locations very attractive for wind powered energy production. In Europe a significant number of offshore wind farms already exist, especially in the North and Baltic Sea. In future this trend will continue, and further offshore wind farms will be built. The majority of offshore wind turbines are mounted on steel foundation structures. Due to the high-cyclic loading by wind and waves fatigue stress plays a substantial role regarding structural safety. Besides the consideration of fatigue within the design process, to monitor existing steel structures for potential fatigue cracks during their life time is a major topic and a challenge. For the structures of the offshore wind turbines are large and partially under water effective reliable methods for the detection of fatigue cracks are required. This contribution presents investigations on different crack detection methods applied at high-cycle fatigue tests on small-scale welded steel samples as well as on large-scale welded steel components. The tests were conducted at the BAM laboratories. For crack detection mainly three different methods were used and compared. The first method regards to the measurement of strain by conventionally strain gauges. Secondly, the crack luminescence was used as a new and effective optical method for surface monitoring. And finally, crack detection by pressure differentials of the inner and outer section of tubular steel elements was investigated. A comparison study will emphasize the advantages and disadvantages of the different methods and show which of the described methods is potentially more suitable for an application on real offshore wind structures. T2 - 5th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures CY - Potsdam, Germany DA - 27.08.2019 KW - Fatigue KW - Steel structures KW - Crack detection PY - 2019 AN - OPUS4-48944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina A1 - Rehfeldt, Rainer T1 - Compatibility of polymeric materials with heating oil/biodiesel blends at different temperatures N2 - Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with admixtures of 10 % biodiesel (B10) and 20 % biodiesel (B20). The polarity of biodiesel increases its solvency and facilitates permeation and extrac-tion. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. The objective of this research was to determine the resistance of frequently used sealing materials such as FKM, EPDM, CR, CSM, NBR, IIR, VMQ, FVMQ, PA and PUR in up to four-year aged B10 for 84 days at 20 °C, 40 °C and 70 °C. The polymeric materials: ACM, FKM, HNBR, PA, PE; POM, PUR and PVC were ex-posed to B20 for 84 days at 40°C and 70°C in another research project. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after the exposure for 84 (42) days in the heating oil blends B10 and B20. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was deter-mined for the evaluation of the compatibility. Measurements of the variations in mass, tensile properties and Shore hardness after exposure of the polymers in non-aged and aged heating oil B10 showed clearly that FKM, FVMQ and PA were the most resistant materials in B10. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to B10. Damage to the materials increased with higher test temperatures and the age of B10. FKM, POM and PVC showed high compatibility in B20 at 40°C and 70 °C. ACM, HNBR and PA were evaluated as resistant in B20 at 40 °C but not at 70°C. T2 - Corrosion 2019 CY - Warsaw, Poland DA - 27.09.2019 KW - Polymers KW - Compatibility evaluations KW - Heating oil with 10% biodiesel KW - Heating oil with 20% biodiesel KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-48146 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina T1 - Compatibility of polymeric sealing materials with biodiesel heating oil blends at different temperatures N2 - Biodiesel is subject to degradation processes like oil and grease. The oxidative degradation products of vegetable oil esters in biodiesel particularly lead to enhanced sedimentation in blended fuels. The polarity of biodiesel increases its solvency and facilitates permeation and extraction. Solvation, swelling and/or extraction lead to changes in the physical properties and chemical changes of polymeric materials. It also accelerates the degradation (hydrolysis and oxidation) of these materials with the loss of additives and stabilizers. The objective of this research was to determine the resistance of frequently used polymeric materials such as ACM, EPDM, FKM, FVMQ, CR, CSM, IIR, HNBR, NBR, PA, PE; POM, PUR, PVC and VMQ in biodiesel and heating oil with 10 %/20 % biodiesel (B10/B20) at 40°C and 70°C. Mass, tensile strength and breaking elongation of the test specimens were determined before and after the exposure for 84 days in the biodiesel heating oil blends. The visual examination of some elastomer test specimens clearly showed the great volume increase until break or partial dissolution. Shore hardness A and D were determined before and after exposure of the test specimens in the biofuels for 42 days. The elastomers CR, CSM, EPDM, IIR, NBR and VMQ were generally not resistant to biodiesel and B10 at 40°C and 70°C. FKM, ACM, HNBR, PA, PE, POM, and PVC showed high compatibility in B10/B20 at 40°C. A lower compatibility was determined for ACM in biodiesel. ACM and HNBR were not resistant in B20 at 70°C. T2 - Biofuels & Bioenergy CY - Rome, Italy DA - 14.10.2019 KW - Heating oil-Biodiesel-Blend KW - Compatibility evaluations KW - Tensile properties KW - Shore hardness PY - 2019 AN - OPUS4-49306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina A1 - Bäßler, Ralph T1 - Compatibility of polymers with heating oil with 20 % biodiesel at different temperatures under static and compressed conditions N2 - Biodiesel is viewed as a major source of energy. In areas such as the European Union, where 80 % of the oil-based fuel is imported, there is also the desire to reduce dependence on external oil supplies. Materials compatibility is a major concern whenever the fuel composition is changed. The question arises of whether polymeric materials are resistant to heating oil with 20 % biodiesel (B20) in comparison to pure heating oil. The polarity of biodiesel increases its solvency and facilitates permeation and extraction. Solvation, swelling and/or extraction lead to changes in the physical properties. Extraction alters the fuel chemistry. These chemical changes could also accelerate the degradation (hydrolysis and oxidation) of the polymeric material with the loss of additives and stabilizers. The objective of this research was to determine the resistance of frequently used materials for components in middle distillate facilities such as ACM, FKM, HNBR, PA, PE, POM, PUR and PVC in heating oil and heating oil blend B20 for 84 days at 40 °C, and FKM, HNBR, PA, POM, PUR and PVC at 70 °C. Mass, tensile strength, breaking elongation and Shore hardness A (D) of the test specimens were determined before and after exposure for 84 (42) days in the test fuels under static conditions. For the investigations under compressed conditions, the mass and the compression set of FKM test specimens were determined before and after exposure for 3, 7, 14, 28, 56 and 90 days in B20 at 40 °C and 70 °C according to ISO 815-1 “Rubber, vul-canized or thermoplastic - determination of compression set – Part 1: At ambient or elevated temperatures”. There is not determined a threshold for the reduction in tensile properties and Shore hardness in the international standards. Therefore, a threshold of 15 % was determined for the evaluation of the compatibility. The change of tensile strength and breaking elongation of test specimens made of ACM, FKM, HNBR, PA, PE, POM, PUR and PVC exposed to heating oil and the blend B20 was less than 15 % at 40 °C. A maximum reduction in Shore hardness A of 14 % was determined for ACM at 40 °C and for HNBR of 15 % at 70 °C. It can be concluded that ACM, FKM, HNBR, PA, PE, POM, PVC and PUR were resistant in B20 at 40°C. FKM, PA, POM and PVC were evaluated as resistant in heat-ing oil and B20 at 70 °C, HNBR and PUR were not resistant in these fuels at 70°C. Based on the mass increase and compression set values of FKM test specimens it can be stated that FKM is resistant in B20 under compressed conditions at 40 °C and 70 °C. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Heating oil - biodiesel - blend KW - Polymeric materials KW - Compatibility KW - Tensile properties KW - Shore Hardness PY - 2019 AN - OPUS4-49002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.09.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion PY - 2019 AN - OPUS4-49302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Robens-Radermacher, Annika A1 - Unger, Jörg F. T1 - Coupling PGD model reduction with importance sampling using adaptive subset simulation for reliability analysis N2 - The key point of structural reliability analysis is the estimation of the failure probability. This probability is defined as the integral over the failure domain which is given by a limit state function. Usually, this function is only implicit given by an underlying finite element simulation of the structure. It is generally not possible to solve the integral analytically. For that reason, numerical methods based on sampling and surrogates have been developed. Nevertheless, these sampling methods still require a few thousand calculations of the underlying finite element model, making reliability analysis computationally expensive for relevant applications. Coupling a reduced order model (proper generalized decomposition) with an efficient variance reducing sampling algorithm can reduce the computational cost of reliability analysis drastically. In the proposed method, an importance sampling technique is coupled with a reduced structural model by means of PGD to estimate the failure probability. Instead of calculating the design point e.g. with optimization algorithms, the design point is adaptively estimated by using the idea of subset simulation. The failure probability is estimated in an iterative scheme based on adaptively computing the design point and refining the PGD model. T2 - 5th international Workshop Reduced Basis, POD and PGD Model Reduction Techniques (MORTech) 2019 CY - Paris, France DA - 19.11.2019 KW - Reliability KW - Probability of failure KW - Importance sampling KW - Proper Generalized Decomposition KW - Reduced order models PY - 2019 AN - OPUS4-49801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Cuéllar, Pablo T1 - Deep foundations for offshore wind turbines T1 - Cimentaciones profundas para aerogeneradores marinos N2 - This presentation deals with the phenomenology and design of pile foundations for offshore wind turbines, and is divided into two lectures. The first lecture presents a brief introduction to the context and peculiarities of such foundations, and then focuses on the particular case of axially loaded piles. This part is most relevant for the relatively slender piles of the multi-pile substructures (i.e. jackets and tripods). A clear distinction between physical phenomenology and practical design is drawn here. The second lecture continues with the case of lateraly loaded offshore piles, which bears most relevance for the case of the monopile foundations. Here again, a clear separation between physical reality and design methods is intended. Finally, the last part of the second lecture introduces several advanced topics which lie outside the classical design approaches, namely the hydromechanical coupling effects (i.e. the excess pore-pressure generation around the monopiles), the cyclic pile fatigue and the so-called pile Setup (i.e. the time effects on the axial pile capacity). The relevance of the latter two topics is illustrated with experimental results from a field testing campaign on real large-scale piles. T2 - MASTERS COURSE 2019 CEDEX-UNED: MECÁNICA DEL SUELO E INGENIERÍA GEOTÉCNICA CY - Laboratorio de Geotecnia, CEDEX, Madrid, Spain DA - 25.03.2019 KW - Pile foundations KW - Offshore wind turbines KW - Physical phenomenology KW - Design methods KW - Numerical modelling KW - Physical testing PY - 2019 AN - OPUS4-47624 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lehmann, Jens A1 - Müller, Thoralf T1 - Demonstrationsexperimente N2 - Der Vortrag ergänzt das theroretisch vermittelte Korrosionswissen, macht es mit praktischen Versuchen erlebbar. T2 - VDEh Seminar "Korrosionsverhalten nichtrostender Stähle in wässrigen Medien und bei atmosphärischer Beanspruchung" CY - Düsseldorf, Germany DA - 03.12.2019 KW - Nichtrostender Stahl KW - Korrosion PY - 2019 AN - OPUS4-49947 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ebell, Gino T1 - Detektion Korrosionsaktiver Bereiche an Stahlbetonbauwerken mittels Potentialfeldmessung N2 - Die Detektion Korrosionsaktiver Bereiche an Stahlbetonbauwerken mittels Potentialfeldmessung ist ein etabliertes Verfahren zur Planung von Instandsetzungsmaßnahmen. Die richtige Durchführung der Messung ist jedoch Maßgebend ür den Erfol und wird in diesem Vortrag näher erörtert. T2 - KKS-Symposium CY - TAE Esslingen, Germany DA - 14.11.2019 KW - Korrosion KW - Potentialfeldmessung PY - 2019 AN - OPUS4-49650 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, Norman A1 - Heyn, A. A1 - Halle, T. A1 - Rosemann, P. T1 - Detektion von Sensibilisierung am nichtrostenden Lean-Duplex-Stahl 1.4062 mit verschiedenen elektrochemischen Methoden N2 - Vergleich von EPR, EKrit, CPT und KorroPad zur Ermittlung von Sensibilisierung an dem bei 600 °C gealterten Lean Duplex 1.4062. T2 - Korrosionsuntersuchung und -überwachung" und "Grundlagen und Simulation" CY - Dusseldorf, Germany DA - 21.11.2019 KW - Lean Duplex KW - Sensibilisierung KW - Lochkorrosion KW - EPR KW - KorroPad KW - Altern PY - 2019 AN - OPUS4-50180 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, Norman A1 - Heyn, A. A1 - Halle, T. A1 - Rosemann, P. T1 - Detektion von Sensibilisierung am nichtrostenden Lean-Duplex-Stahl 1.4062 mit verschiedenen elektrochemischen Methoden N2 - Vorstellung von EPR, Ekrit, CPT und KorroPad zur Erfassung von Sensibilisierung am Lean Duplex 1.4062 an verschieden wärmebehandelten Zuständen. T2 - GfKORR-Arbeitskreis "Korrosion und Korrosionsschutz von Eisen und Stahl" CY - Duisburg, Germany DA - 12.12.2019 KW - Lean Duplex KW - Sensibilisierung KW - Lochkorrosion KW - EPR KW - KorroPad KW - Altern PY - 2019 AN - OPUS4-50182 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weltschev, Margit A1 - Pötzsch, Sina A1 - Bäßler, Ralph T1 - DGMK-Projekt 780: Entwicklung einer Prüfmethode zur Bewertung der Materialbeständigkeit von Bauteilen in Mitteldestillatanwendungen N2 - Für Bauteile (Komponenten) von Versorgungsanlagen für flüssige Brenn- und Kraftstoffe muss die Beständigkeit der metallenen Werkstoffe und Polymere nachgewiesen werden. Im Anwendungsfall von Heizöl mit 20 % biogenen Anteilen in Form von Rapsölfettsäuremethylester (FAME, Biodiesel) ist es für eine konservative Beurteilung des Korrosionssystems Werkstoff/Medium/Umgebung wichtig, die Alterungseffekte des Mediums einzubeziehen. Entwicklung eines Prüfverfahrens für die Untersuchung der Beständigkeit von metallenen Werkstoffen und Polymeren in Heizöl und Heizöl-FAME-Blends, das für eine Vorauswahl der Werkstoffe und zum Nachweis der Beständigkeit im Hinblick auf die bauaufsichtlichen Zulassungsverfahren geeignet ist. Ein Schwerpunkt wird bei den metallenen Werkstoffen auf der Erprobung von Messmethoden liegen, mit denen sich in kurzer Versuchszeit ein Korrosionsangriff detektieren lässt. Die untersuchten Werkstoffe Aluminium, Stahl 1.0037, 1.4301, Kupfer, Messing (CuZn40Pb) und Zink (ZP0410) sind in B0, B20, B100 und in 6 Jahre altem B100 beständig. Auch in einem Jahr alten B20 und in einem Jahr alten B100 sind die Werkstoffe beständig. Bei Kupfer blieb die Korrosionsrate in der Flüssigphase sowohl in B20 (0 μ m/ a) als auch in B100 (4 μ m/ a) nach einem Jahr unverändert. Für das 6 Jahre alte B100 stieg die Korrosionsrate des Kupfers an (16 μ m/a). Im Gegensatz dazu sank bei Messing die Korrosionsrate in der Flüssigphase mit dem Alter des Brennstoffs, nach einem Jahr für B20 von 4 μ m/ a auf 1 μ m/a und für B100 von 36 μ m/ a auf 6 μ m/ a, im 6 Jahre alten B100 lag die Korrosionsrate des Messings bei 0 μ m/ a. In 8 Jahre altem B10 trat bei Zink in der Flüssigphase Flächenkorrosion auf, es ist in dem Medium demnach nicht beständig. Messing zeigte örtliche Korrosion in der Gasphase, es ist folglich unbeständig und für den Einsatz in stark gealterten B10 nicht geeignet. Aluminium, 1.0037, 1.4301 und Kupfer sind in dem 8 Jahre alten B10 beständig. Die Änderung der Zugfestigkeit und der Reißdehnung von ACM, HNBR und FKM in Heizöl, B20 und gealterten B10 beträgt < 15 %. Diese Werkstoffe sind in Heizöl, B20 und in gealterten B10 unter Berücksichtigung des von der BAM zur Beurteilung der Beständigkeit festgelegten Grenzwertes von 15 % bei 40 °C als beständig zu bewerten. PUR ist bei 40 °C nicht beständig in B20 und in gealtertem B10. Bei 70 °C ist HNBR nicht in B20 beständig aufgrund der Verringerung der Zugfestigkeit (40 %) und der Reißdehnung (50 %). FKM ist bei 70 °C in Heizöl und in B20 beständig. T2 - Sitzung AK Prüfstellen CY - Berlin, Germany DA - 18.09.2019 KW - Heizöl mit 20% Biodiesel (B20) KW - Beständigkeit KW - Metallene Werkstoffe KW - Polymere Werkstoffe KW - Zugeigenschaften KW - Shore-Härte PY - 2019 AN - OPUS4-50188 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -