TY - JOUR A1 - Chen, Yue A1 - Schilling, Markus A1 - von Hartrott, P. A1 - Beygi Nasrabadi, Hossein A1 - Skrotzki, Birgit A1 - Olbricht, Jürgen T1 - Ontopanel: A Tool for Domain Experts Facilitating Visual Ontology Development and Mapping for FAIR Data Sharing in Materials Testing JF - Integrating Materials and Manufacturing Innovation N2 - In recent years, the design and development of materials are strongly interconnected with the development of digital technologies. In this respect, efficient data management is the building block of material digitization and, in the field of materials science and engineering (MSE), effective solutions for data standardization and sharing of different digital resources are needed. Therefore, ontologies are applied that represent a map of MSE concepts and relationships between them. Among different ontology development approaches, graphical editing based on standard conceptual modeling languages is increasingly used due to its intuitiveness and simplicity. This approach is also adopted by the Materials-open-Laboratory project (Mat-o-Lab), which aims to develop domain ontologies and method graphs in accordance with testing standards in the field of MSE. To suit the actual demands of domain experts in the project, Ontopanel was created as a plugin for the popular open-source graphical editor diagrams.net to enable graphical ontology editing. It includes a set of pipeline tools to foster ontology development in diagrams.net, comprising imports and reusage of ontologies, converting diagrams to Web Ontology Language (OWL), verifying diagrams using OWL rules, and mapping data. It reduces learning costs by eliminating the need for domain experts to switch between various tools. Brinell hardness testing is chosen in this study as a use case to demonstrate the utilization of Ontopanel. KW - Materials Testing KW - Ontology KW - Visual ontology development KW - Data mapping KW - FAIR PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560339 DO - https://doi.org/10.1007/s40192-022-00279-y SP - 1 EP - 12 PB - Springer AN - OPUS4-56033 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bayerlein, Bernd A1 - Zia, Ghezal-Ahmed A1 - Schilling, Markus A1 - Skrotzki, Birgit A1 - von Hartrott, P. A1 - Hanke, T. A1 - Waitelonis, J. T1 - Towards Interoperability: Digital Representation of a Material Specific Characterization Method N2 - Certain metallic materials gain better mechanical properties through controlled heat treatments. For example, in age-hardenable aluminum alloys, the strengthening mechanism is based on the controlled formation of nanometer sized precipitates, which represent obstacles to dislocation movement. Precise tuning of the material structure is critical for optimal mechanical behavior in the application. Therefore, analysis of the microstructure and especially the precipitates is essential to determine the ideal parameters for the interplay of material and heat treatment. Transmission electron microscopy (TEM) is utilized to identify precipitate types and orientations in a first step. Dark-field imaging (DF-TEM) is often used to image the precipitates and to quantify their relevant dimensions. The present work aims at the digital representation of this material-specific characterization method. Instead of a time-consuming, manual image analysis, an automatable, digital approach is demonstrated. Based on DF-TEM images of different precipitation states of a wrought aluminum alloy, a modularizable digital workflow for quantitative precipitation analysis is presented. The integration of this workflow into a data pipeline concept will also be discussed. Thus, by using ontologies, the raw image data, their respective contextual information, and the resulting output data from the quantitative precipitation analysis can be linked in a triplestore. Publishing the digital workflow and the ontologies will ensure the reproducibility of the data. In addition, the semantic structure enables data sharing and reuse for other applications and purposes, demonstrating interoperability. The presented work is part of two digitization initiatives, the Platform MaterialDigital (PMD, materialdigital.de) and Materials-open-Laboratory (Mat-o-Lab). T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Interoperability KW - Ontology KW - Precipitation Analysis PY - 2022 AN - OPUS4-55892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chen, Yue A1 - Schilling, Markus A1 - von Hartrott, P. A1 - Huschka, M. A1 - Olbricht, Jürgen A1 - Pirskawetz, Stephan A1 - Skrotzki, Birgit A1 - Hanke, T. A1 - Todor, A. T1 - Ontopanel: a diagrams.net plugin for graphical semantic modelling N2 - Ontologies that represent a map of the concepts and relationships between them, are becoming an effective solution for data standardization and integration of different resources in the field of materials science, as efficient data storage and management is the building block of material digitization. However, building a domain ontology is not a simple task. It requires not only a collaborative effort between ontologists and domain experts, but also the modeling approaches and tools play a key role in the process. Among all approaches, graphical representation of domain ontologies based on standard conceptual modeling languages is widely used because of its intuitiveness and simplicity. Various tools have been developed to realize this approach in an intuitive way, such as Protégé plugins and web visualization tools. The Materials-open-Lab (MatOLab) project, which aims to develop ontologies and workflows in accordance with testing standards for the materials science and engineering domains, adopted a UML (Unified Modeling Language) approach based on the diagrams.net. It is a powerful, popular, open-source graphical editor. In practical case studies, however, many users’ needs could not be met, such as reusing ontology, conversion, and data mapping. Users must switch between different tools to achieve a certain step, and thereby invariably increase learning cost. The lack of validation also leads to incorrect diagrams and results for users who are not familiar with the ontology rules. To address these issues, we designed Ontopanel, a diagrams.net-based plugin that includes a set of pipeline tools for semantic modeling: importing and displaying protégé-like ontologies, converting diagrams to OWL, validating diagrams by OWL rules, and mapping data. It uses diagrams.net as the front-end for method modeling and Django as the back-end for data processing. As a web-based tool, it is very easy to expand its functionality to meet changing practical needs. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Ontology KW - Tools KW - Material digital KW - Mat-o-lab KW - Graphic design KW - Ontology development KW - Data mapping KW - FAIR KW - Materials testing PY - 2022 AN - OPUS4-55884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Birkholz, Henk A1 - Grundmann, J. A1 - Grübler, N. A1 - Marschall, Niklas A1 - Portella, Pedro Dolabella A1 - Skrotzki, Birgit A1 - Waitelonis, J. A1 - von Hartrott, P. T1 - FAIR tensile test data in PMD: From a standard-compliant application ontology to RDF data in a triple store N2 - Following the new paradigm of materials development, design and optimization, the digitalization of materials and processes is the main goal which imposes a huge challenge. In this respect, the quality assurance of processes and output data as well as the interoperability between applications following FAIR (findability, accessibility, interoperability, reusability) principles are to be ensured. This includes storage, processing and querying of data in a preferably standardized form, also addressing the incorporation of standardization bodies. To meet the challenge to contextualize material data in a way that is consistent with all stakeholders, all necessary information on the condition of the material including production and application-related changes have to be made available via a uniform, machine-readable description. For this purpose, ontologies are to be used since they allow for machine-understandable knowledge representations and semantic conceptualizations that are needed for data management and the digitalization in the field of materials science. With respect to this currently ever-growing topic of integration and reuse of data and knowledge from synthesis, production and characterization of materials, this presentation shows the efforts taken within the project Platform MaterialDigital (PMD, materialdigital.de) to store tensile test data in accordance with a standard-compliant ontological representation. The includes the path from developing an ontology in accordance with the respective standard, converting ordinary and arbitrarily selected data gained from standard tests into the interoperable RDF format, up to connecting the ontology and data, respectively. Finally, such data can be queried from a triple store. In the field of material science and engineering (MSE), most mechanical test methods are standardized which serves as a valid basis for ontology development. Therefore, the well-known tensile test of metals at room temperature (DIN EN ISO standard 6892-1:2019-11) was selected to be considered as one of the first use cases in PMD. This consideration within the PMD features both, the ontological representation of such a tensile test in accordance with the standard as well as exemplary data generation. The semantic connection of the ontology and data leads to interoperability and an enhanced ability of querying. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - S355 steel sheet KW - Mechanical testing KW - Tensile test KW - Digitization KW - Ontology KW - Data structure KW - Material digital PY - 2022 AN - OPUS4-55882 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus A1 - Bayerlein, Bernd A1 - Olbricht, Jürgen A1 - Skrotzki, Birgit T1 - Towards digitalization of materials in PMD: An application ontology of the tensile test N2 - Due to the diversity of materials and the processes associated with their production and use, the complexity of the lifecycles of materials and the multitude of academic and industrial researchers participating in generation of data for material design impose a huge challenge. The topical goal of digitalizing materials and processes can only be adequately addressed by consolidating the efforts of all stakeholders in this field. There are many scattered activities, but there is a demand for an elimination of redundancies as well as an advance in acceptance and a common basis in the digitalization of materials. Furthermore, data analysis methods play an important role in both, the experimental and simulation-based digital description of materials, but they have been poorly structured so far. Therefore, the two joint projects Platform Material Digital (PMD, materialdigital.de) and Materials open Laboratory (Mat-o-Lab, matolab.de) aim to contribute to a standardized description of data processing methods in materials research. Besides stimulating the formation of a collaborative community in this respect, their main technical goals are the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. In this regard, data management in accordance with the FAIR (findability, accessibility, interoperability, reuseability) principles is addressed. There is a common agreement in the scientific community following current discussions that data is supposed to be conform to these principles. This includes storage, processing and querying of data in a preferably standardized form. To meet the challenge to contextualize material data in a way that is consistent with all stakeholders, all necessary information on the condition of the material including production and application-related changes have to be made available via a uniform, machine-readable description. For this purpose, ontologies are to be used since they allow for machine-understandable knowledge representations and conceptualizations that are needed for data management and the digitalization in the field of materials science. As first efforts in PMD and Mat-o-Lab, application ontologies are created to explicitly describe processes and test methods. Thereby, the well-known tensile test of metals at room temperature was described ontologically in accordance with the respective ISO standard 6892-1:2019-11. The efforts in creating this tensile test application ontology are shown in this presentation. Especially, the path of ontology development based on standards to be pursued is focused, which is in accordance with the generic recommendations for ontology development and which is supposed to be exemplary for the creation of other application ontologies. T2 - VirtMet: 1st International Workshop on Metrology for Virtual Measuring Instruments and Digital Twins CY - Online meeting DA - 21.09.2021 KW - Platform Material Digital (PMD) KW - Ontology KW - Tensile test KW - Standard KW - Ontology development PY - 2021 AN - OPUS4-53481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Tensile Test Ontology used in Platform Material Digital (PMD) N2 - Data analysis methods play an important role in both the experimental and simulation-based digital description of materials but have so far been poorly structured. The platform Material Digital (PMD) is supposed to contribute to a standardized description of data processing methods in materials research. The goal is the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. Therefore, application ontologies are created to explicitly describe processes and test methods. In this presentation, the first efforts within the joint project PMD in creating a tensile test application ontology in accordance with the ISO standard 6892-1:2019-11 are shown. Especially, the path of ontology development to be pursued based on standards was focused. Furthermore, the presentation includes a live demonstration of queries possibly performed to query data that was uploaded in the PMD triple store. T2 - Online Workshop: An introduction to the semantic web and ontologies CY - Online meeting DA - 23.04.2021 KW - Ontology KW - Tensile Test KW - Platform Material Digital KW - PMD KW - Knowledge Graphs KW - Semantic Web PY - 2021 AN - OPUS4-52949 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Markus T1 - Tensile Test: From Standard to PMD Application Ontology N2 - Data analysis methods play an important role in both the experimental and simulation-based digital description of materials but have so far been poorly structured. The platform Material Digital (PMD) should contribute to a standardized description of data processing methods in materials research. The goal is the quality assurance of the processes and the output data, the acquisition and definition of their accuracy as well as the interoperability between applications. Therefore, application ontologies are created to explicitly describe processes and test methods. In this presentation, the first efforts in creating a tensile test application ontology in accordance with the ISO standard 6892-1:2019-11 are shown. Especially, the path of ontology development to be pursued based on standards was focused. T2 - Onboarding Workshop der Plattform Material Digital (PMD) CY - Online meeting DA - 13.04.2021 KW - Ontology KW - Platform MaterialDigital KW - PMD KW - Tensile Test KW - Normung KW - Standardization PY - 2021 AN - OPUS4-52425 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skrotzki, Birgit A1 - Muth, Thilo A1 - Portella, Pedro Dolabella T1 - Interconnecting data repositories: The Platform MaterialDigital (BMBF) N2 - Presentation of the Platform MaterialDigital. Presentation of the needs and challenges in materials science and engineering. T2 - 3rd EMMC International Workshop - EMMC CY - Online meeting DA - 02.03.2021 KW - Digitization KW - Standardization KW - Ontology PY - 2021 AN - OPUS4-52247 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -