TY - JOUR A1 - Aristia, Gabriela A1 - Le, Quynh Hoa A1 - Bäßler, Ralph T1 - Corrosion of Carbon Steel in Artificial Geothermal Brine: Influence of Carbon Dioxide at 70 °C and 150 °C JF - Materials N2 - This study focuses on the corrosion mechanism of carbon steel exposed to an artificial geothermal brine influenced by carbon dioxide (CO2) gas. The tested brine simulates a geothermal source in Sibayak, Indonesia, containing 1500 mg/L of Cl-, 20 mg/L of SO4 2-, and 15 mg/L of HCO3-with pH 4. To reveal the temperature effect on the corrosion behavior of carbon steel, exposure and electrochemical tests were carried out at 70 °C and 150 °C. Surface analysis of corroded specimens showed localized corrosion at both temperatures, despite the formation of corrosion products on the surface. After 7 days at 150 °C, SEM images showed the formation of an adherent, dense, and crystalline FeCO3 layer. Whereas at 70 °C, the corrosion products consisted of chukanovite (Fe2(OH)2CO3) and siderite (FeCO3), which are less dense and less protective than that at 150 °C. Control experiments under Ar-environment were used to investigate the corrosive effect of CO2. Free corrosion potential (Ecorr) and electrochemical impedance spectroscopy (EIS) confirm that at both temperatures, the corrosive effect of CO2 was more significant compared to that measured in the Ar-containing solution. In terms of temperature effect, carbon steel remained active at 70 °C, while at 150 °C, it became passive due to the FeCO3 formation. These results suggest that carbon steel is more susceptible to corrosion at the near ground surface of a geothermal well, whereas at a deeper well with a higher temperature, there is a possible risk of scaling (FeCO3 layer). A longer exposure test at 150 °C with a stagnant solution for 28 days, however, showed the unstable FeCO3 layer and therefore a deeper localized corrosion compared to that of seven-day exposed specimens. KW - Carbon steel KW - CO2 KW - Corrosion KW - Electrochemical impedance spectroscopy KW - Geothermal PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-498168 DO - https://doi.org/10.3390/ma12223801 SN - 1996-1944 VL - 12 IS - 22 SP - 3801-1 EP - 20 PB - MDPI CY - Basel AN - OPUS4-49816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Corrosion Effects on Materials Considered for CC(U)S Applications N2 - Commercially available carbon steels are suitable for compression and pipelines as long as moisture content and impurities are limited. (water 50 to 100 ppmv, SO2 and NO2 ca. 100 ppmv) Corrosion rates increase with increasing water content. (0.2 – 20 mm/a) Condensation of acids and therefore droplet formation is always possible, even at low water contents. A low SO2 content within the CO2-stream might be more important than a low water content. Cr13-steels showed a general susceptibility to shallow pitting and pitting. So, they seem to be not suitable for CCUS applications. Low alloyed steels showed better corrosion behavior (predictable uniform corrosion). For direct contact with saline aquifer fluids only high alloyed steels shall be used. T2 - EFC Webinar CY - Online Meeting (Chongqing, China) DA - 18.05.2022 KW - Corrosion KW - CO2 quality KW - CO2 KW - CCS KW - CCU KW - Pipeline PY - 2022 AN - OPUS4-54854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, R. A1 - Féron, D. A1 - Mills, D. A1 - Ritter, S. A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - de Graeve, I. A1 - Dugstad, A. A1 - Grassini, S. A1 - Hack, T. A1 - Halama, M. A1 - Han, E.-H. A1 - Harder, T. A1 - Hinds, G. A1 - Kittel, J. A1 - Krieg, R. A1 - Leygraf, C. A1 - Martinelli, L. A1 - Mol, A. A1 - Neff, D. A1 - Nilsson, J.-O. A1 - Odnevall, I. A1 - Paterson, S. A1 - Paul, S. A1 - Prošek, T. A1 - Raupach, M. A1 - Revilla, R. I. A1 - Ropital, F. A1 - Schweigart, H. A1 - Szala, E. A1 - Terryn, H. A1 - Tidblad, J. A1 - Virtanen, S. A1 - Volovitch, P. A1 - Watkinson, D. A1 - Wilms, M. A1 - Winning, G. A1 - Zheludkevich, M. T1 - Corrosion challenges towards a sustainable society JF - Materials and corrosion N2 - A global transition towards more sustainable, affordable and reliable energy systems is being stimulated by the Paris Agreement and the United Nation's 2030 Agenda for Sustainable Development. This poses a challenge for the corrosion industry, as building climate‐resilient energy systems and infrastructures brings with it a long‐term direction, so as a result the long‐term behaviour of structural materials (mainly metals and alloys) becomes a major prospect. With this in mind “Corrosion Challenges Towards a Sustainable Society” presents a series of cases showing the importance of corrosion protection of metals and alloys in the development of energy production to further understand the science of corrosion, and bring the need for research and the consequences of corrosion into public and political focus. This includes emphasis on the limitation of greenhouse gas emissions, on the lifetime of infrastructures, implants, cultural heritage artefacts, and a variety of other topics. KW - Corrosion KW - Corrosion costs KW - Corrosion protection KW - Preventive strategies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554801 DO - https://doi.org/10.1002/maco.202213140 SN - 1521-4176 VL - 73 IS - 11 SP - 1730 EP - 1751 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications T2 - Proceedings of 1st International Conference on Corrosion Protection and Application N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.10.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion KW - Steel PY - 2019 SP - Paper 31 PB - Chinese Society for Corrosion and Protection CY - Chongqing/China AN - OPUS4-49301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Le, Quynh Hoa A1 - Yevtushenko, Oleksandra A1 - Bettge, Dirk T1 - Corrosion Aspects for Materials to be Used in CC(U)S Applications N2 - This contribution provides current findings regarding materials susceptibility for carbon capture, utilization and storage (CCUS) applications. Basing on results gathered in 2 German long-term projects (COORAL and CLUSTER) suitable materials are introduced as well as dominating impurities of the CO2-stream and corrosion mechanisms. Investigations cover the whole CCUS process chain and provide material recommendations for certain parts. T2 - 1st International Conference on Corrosion Protection and Application CY - Chongqing, China DA - 09.09.2019 KW - Carbon KW - Capture KW - Storage KW - Utilization KW - CCS KW - CCU KW - CO2 KW - Corrosion PY - 2019 AN - OPUS4-49302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knauer, S A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Jaeger, P T1 - Contact angle and corrosion of a Water – CO2 system on X70 and S41500 at 278 K and pressures up to 20 MPa JF - International Journal of Greenhouse Gas Control N2 - Interfacial properties related to wettability and corrosion in CO2 transport pipelines are experimentally determined by the sessile and the pendant drop methods. The contact angle of a water drop in a compressed CO2 atmosphere is analyzed on an X70 pipeline carbon steel and compared to that on a martensitic steel S41500 to elucidate the effect of corrosion process on active wetting behaviour. The measurements are performed with liquid CO2 at 278 K and pressures ranging from 5 to 20 MPa. The results show that the contact angle (CA) increases with pressure from 132 ° to 143 ° for S41500 and from 117 ° to 137 ° for X70 and decreases with drop age by 20 ° to 24 ° regardless of the pressure and of the fact that corrosion only occurs on X70, which is confirmed by scanning electron microscopy, element mapping and energy dispersive x-ray spectrometry (EDS) analysis. At higher pressure, the contact angles on both materials converge. Further, related properties like density and interfacial tension were determined. CO2 - saturated water has a higher density than pure water: At 5 MPa saturated water reaches a density of 1017 kg⋅m^(-3) and at 20 MPa 1026 kg⋅m^(-3) compared to pure water with a density of 1002 kg⋅m^(-3) and 1009 kg⋅m^(-3), respectively. In this pressure range the IFT drops from 33 mN⋅m^(-1)at 5 MPa to 23 mN⋅m^(-1) at 20 MPa. KW - Carbon capture KW - Utilization, and storage (CCUS) technology KW - Contact angle KW - Wetting KW - Corrosion KW - Condensate KW - Impurities KW - Carbon steel PY - 2019 UR - https://www.sciencedirect.com/science/article/pii/S1750583618309472?dgcid=author DO - https://doi.org/10.1016/j.ijggc.2019.06.021 SN - 1750-5836 SN - 1878-0148 VL - 89 SP - 33 EP - 39 PB - Elsevier, ScienceDirect AN - OPUS4-48601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bäßler, Ralph A1 - Yevtushenko, Oleksandra A1 - Le, Quynh Hoa A1 - Bettge, Dirk T1 - Components in CO2-stream, corrosive to Materials to be Used in CC(U)S Applications N2 - CO2 quality specifications are not only a matter of CO2 purity (i.e. CO2 content). The “rest” also matters, in particular contents of reactive impurities affecting material corrosion (and rock alteration). Also chemical reactions in CO2 stream needs to be considered, in particular when combining CO2 streams of different compositions. T2 - WCO Forum at AMPP Annual International Corrosion Conference 2021 CY - Online Meeting DA - 26.04.2021 KW - Carbon capture storage KW - Corrosion PY - 2021 AN - OPUS4-52502 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -