TY - JOUR ED - Bonse, Jörn ED - Spaltmann, Dirk T1 - Special issue: Laser-induced periodic surface nano- and microstructures for tribological applications N2 - Laser material processing is an emerging technology that generates surface functionalities on the basis of optical, mechanical, or chemical properties. In the form of laser surface texturing (LST), it has attracted a remarkable amount of research to tailor surface properties towards various tribological applications. The main advantages of this single-step, laser-based technology are the contactless machining, featuring a high flexibility, efficiency, and speed, along with the excellent quality of the processed products. LST can be applied precisely localized to sub-micrometric areas, but, via laser beam scanning, it is also feasible for structuring large surface areas at the square meter size. This Special Issue focuses on the latest developments concerning the tribological performance of laser-generated periodic surface nano- and microstructures and their applications. This includes the laser-based processing of different surface patterns, such as “self-organized” laser-induced periodic surface structures (LIPSS, ripples), grooves, micro-spikes, hierarchical hybrid nano-/micro-structures, microfeatures generated by direct laser interference patterning (DLIP), or even dimples or other topographic geometries shaped by direct laser modification or ablation. The applications of these periodically nano- and micro-patterned surfaces may improve the lubricated or non-lubricated tribological performance of surfaces in conformal and even non-conformal contact through a reduction of wear, a variation of the coefficient of friction, altered load carrying capacity, etc., resulting in energy saving, improved reliability, increased lifetimes as well as durability, leading in turn to extended maintenance intervals/reduced down-time. This can be beneficial in terms of bearings, gears, engines, seals, cutting tools, or other tribological components. Fundamental aspects addressed may involve the investigation of the relevant physical and chemical effects accompanying the laser-generated nano- and microscale topographies, such as alterations of the material structures, the hardness, superficial oxidation, the role of additives contained in lubricants, surface wettability, micro-hydrodynamic effects, etc. For this Special Issue we aim to attract both academic and industrial researchers and would like to provide a bridge between research in the fields of tribology and laser material processing in order to foster the current knowledge and present new ideas for future applications and new technologies. KW - Applications KW - Friction KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Wear PY - 2020 UR - https://www.mdpi.com/journal/lubricants/special_issues/laser_periodic SN - 2075-4442 VL - 8 IS - 3 SP - Article 1 EP - Article 10 PB - MDPI CY - Basel AN - OPUS4-50914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Reichelt, Manuel A1 - Cappella, Brunero T1 - Influence of relative humidity on wear of self-mated 100 Cr6 steel N2 - The influence of relative humidity on friction and wear is subject of several studies in the last decades. A comprehensive understanding of physical and chemical phenomena affecting the tribology is hampered by the lack of reproducible experimental results, by the large number of variables, and by several difficulties in the detection of tribochemical processes and products. In the present work, we analyze the wear coefficient and the wear volumes of 686 unlubricated tests performed on different oscillating tribometers with 100Cr6 balls on 100Cr6 planes at different relative humidity. Aim of this work is to assess the repeatability and reproducibility of data, to determine the dependence of the wear coefficient on the relative humidity, to understand the underlying physicochemical phenomena and to build three dimensional maps of the wear coefficient as a function of both humidity and the product of normal force and sliding distance. KW - Wear KW - 100Cr6 KW - Relative humidity PY - 2020 DO - https://doi.org/10.1016/j.wear.2020.203239 VL - 450-451 SP - 203239 AN - OPUS4-50583 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Taparli, Ugur Alp A1 - Kannengießer, Thomas A1 - Cieslik, K. A1 - Mory, D. A1 - Griesche, Axel T1 - In situ chemical composition analysis of a tungsten-inert-gas austenitic stainless steel weld measured by laser-induced breakdown spectroscopy N2 - The chemical composition of a weld metal determines the resulting solidification mode of stainless steel and the consequent weld metal quality. In this work tungsten inert gas (TIG) welding of EN grade 1.4435 austenitic stainless steel was monitored using laser-induced breakdown spectroscopy (LIBS) for the in situ measurement of chemical composition changes. This research aims to prototype a real-time chemical composition analysis system for welding applications and prove the feasibility of such quality control loop. LIBS was used to investigate in situ the monitoring of metal vaporization during TIG welding. We found Mn vapor formation above the weld pool and subsequent condensation of Mn on the weld metal surface using LIBS. Post-weld line scans were conducted by LIBS on various welds produced with different welding currents. Local changes of Ni and Mn were observed at higher welding currents. The results are in good agreement with the literature and proved that LIBS can be used in situ to inspect the TIG welding process. T2 - 10th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy CY - Brünn, Czechia DA - 08.09.2019 KW - LIBS KW - Welding KW - Austenitic stainless steel KW - Metal vapor KW - In situ measurement PY - 2020 DO - https://doi.org/10.1016/j.sab.2020.105826 SN - 0584-8547 VL - 167 SP - 105826 PB - Elsevier B.V. CY - Amsterdam, Niederlande AN - OPUS4-50582 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Florian, Camilo A1 - Wonneberger, R. A1 - Undisz, A. A1 - Kirner, Sabrina V. A1 - Wasmuth, Karsten A1 - Spaltmann, Dirk A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Chemical effects during the formation of various types of femtosecond laser-generated surface structures on titanium alloy N2 - In this contribution, chemical, structural, and mechanical alterations in various types of femtosecond laser-generated surface structures, i.e., laser-induced periodic surface structures (LIPSS, ripples), Grooves, and Spikes on titanium alloy, are characterized by various surface analytical techniques, including X-ray diffraction and glow-discharge optical emission spectroscopy. The formation of oxide layers of the different laser-based structures inherently influences the friction and wear performance as demonstrated in oil-lubricated reciprocating sliding tribological tests (RSTTs) along with subsequent elemental mapping by energy-dispersive X-ray analysis. It is revealed that the fs-laser scan processing (790 nm, 30 fs, 1 kHz) of near-wavelength-sized LIPSS leads to the formation of a graded oxide layer extending a few hundreds of nanometers into depth, consisting mainly of amorphous oxides. Other superficial fs-laser-generated structures such as periodic Grooves and irregular Spikes produced at higher fluences and effective number of pulses per unit area present even thicker graded oxide layers that are also suitable for friction reduction and wear resistance. Ultimately, these femtosecond laser-induced nanostructured surface layers efficiently prevent a direct metal-to-metal contact in the RSTT and may act as an anchor layer for specific wear-reducing additives contained in the used engine oil. KW - Laser-induced oxide layer KW - Laser-induced periodic surface strctures (LIPSS) KW - Femtosecond laser processing KW - Tribology KW - Surface processing PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505660 DO - https://doi.org/10.1007/s00339-020-3434-7 SN - 0947-8396 SN - 1432-0630 VL - 126 IS - 4 SP - 266 PB - Springer Nature Switzerland AG AN - OPUS4-50566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Griesche, Axel T1 - Measurement of Hydrogen Distributions in Metals by Neutron Radiography and Tomography N2 - Neutron imaging is a valuable tool for measuring hydrogen distributions qualitatively and quantitatively in metals. Time-resolved neutron radiography allows to measure hydrogen mass flow inside cm thick steel samples with ~10 s temporal resolution. Hydrogen accumulations around cracks in embrittled iron samples can be visualized three-dimensionally by neutron tomography. This quality of information allows new insights for the analysis of damage mechanisms on a micrometer scale, e.g. of hydrogen blistering. Even the gas pressure of molecular hydrogen in crack cavities has been measured from tomographic reconstructions to be in the range of 5 MPa to 15 MPa for technical iron. Further, this method is non-destructive and provides local information in situ and in all three dimensions with a spatial resolution of 20 - 30 µm. The combination with other methods gives a new quality of information, e.g. of the hydrogen allocation on fractured surfaces. T2 - Symposium on large scale facilities CY - Berlin, Germany DA - 09.03.2020 KW - Hydrogen embrittlement KW - Neutron imaging KW - Hydrogen diffusion KW - Neutron radiography KW - Neutron tomography PY - 2020 AN - OPUS4-50548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Röhsler, Andreas A1 - Sobol, Oded A1 - Hänninen, H. A1 - Böllinghaus, Thomas T1 - In-situ ToF-SIMS analyses of deuterium re-distribution in austenitic steel AISI 304L under mechanical load N2 - Hydrocarbons fuel our economy. Furthermore, intermediate goods and consumer products are often hydrocarbon-based. Beside all the progress they made possible, hydrogen-containing substances can have severe detrimental effects on materials exposed to them. Hydrogen-assisted failure of iron alloys has been recognised more than a century ago. The present study aims to providing further insight into the degradation of the austenitic stainless steel AISI 304L (EN 1.4307) exposed to hydrogen. To this end, samples were electrochemically charged with the hydrogen isotope deuterium (2H, D) and analysed by scanning electron microscopy (SEM), electron back-scatter diffraction (EBSD) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). It was found that deuterium caused a phase transformation from the original γ austenite into ε- and α’-martensite. Despite their low solubility for hydrogen, viz. deuterium, the newly formed phases showed high deuterium concentration which was attributed to the increased density of traps. Information about the behaviour of deuterium in the material subjected to external mechanical load was gathered. A four-point-bending device was developed for this purpose. This allowed to analyse in-situ pre-charged samples in the ToF-SIMS during the application of external mechanical load. The results indicate a movement of deuterium towards the regions of highest stress. KW - ToF-SIMS KW - Hydrogen KW - Deuterium KW - AISI 304L KW - EBSD PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-505142 DO - https://doi.org/10.1038/s41598-020-60370-2 VL - 10 IS - 1 SP - 3611 PB - Nature AN - OPUS4-50514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Richter, Tim A1 - Mayr, P. A1 - Nitsche, A. A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Hydrogen diffusion in creep-resistant 9% Cr P91 multi-layer weld metal N2 - Welded components of P91 9% Cr steel demand for careful welding fabrication with necessary post weld heat treatment (PWHT). Before the PWHT, a hydrogen removal heat treatment is necessary for avoidance of hydrogen assisted cracking (HAC). In this context, the microstructure and temperature-dependent hydrogen diffusion is important, and reliable diffusion coefficients of P91 weld metal are rare. For that reason, the diffusion behavior of P91 multi-layer weld metal was investigated for as-welded (AW) and PWHT condition by electrochemical permeation experiments at room temperature and carrier gas hot extraction (CGHE) from 100 to 400 °C. Hydrogen diffusion coefficients were calculated, and the corresponding hydrogen concentration was measured. It was ascertained that both heat treatment conditions show significant differences. At room temperature the AW condition showed significant hydrogen trapping expressed by to seven times lower diffusion coefficients. A preferred diffusion direction was found in perpendicular direction expressed by high permeability. The CGHE experiments revealed lower diffusion coefficients for the AW condition up to 400 °C. In this context, a hydrogen concentration of approximately 21 ml/100 g was still trapped at 100 °C. For that reason, a certain HAC susceptibility of as-welded P91 weld metal cannot be excluded, and hydrogen removal should be done before PWHT. KW - Creep resisting materials KW - Diffusion KW - Hydrogen KW - Weld metal KW - Post weld heat treatment KW - Microstructure PY - 2020 DO - https://doi.org/10.1007/s40194-019-00828-8 SN - 0043-2288 VL - 64 IS - 2 SP - 267 EP - 281 PB - Springer AN - OPUS4-50471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Friedrich, Sebastian A1 - Cappella, Brunero T1 - Study of micro- and nanoscale wetting properties of lubricants using AFM force-distance curves N2 - Atomic force microscopy (AFM) plays an important role as a multifuntional tool in nanotribology.In the present work it was shown that the main features of force-distance curves on different lubricants have been characterized and the underlying phenomena could be explained. KW - Lubricants KW - Atomic force microscopy KW - Force-distance curves PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-504631 DO - https://doi.org/10.1007/s11249-020-1275-3 SN - 1573-2711 VL - 68 IS - 1 SP - 1 EP - 12 PB - Springer CY - Cham AN - OPUS4-50463 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vollert, F. A1 - Thomas, Maximilian A1 - Kromm, Arne A1 - Gibmeier, J. T1 - Hot crack assessment of LTT welds using μCT N2 - Investigations on weldability often deal with hot cracking, as one of the most popular failure during weld fabrication. The modified varestraint transvarestraint hot cracking test (MVT) is well known for the assessment of the hot cracking susceptibility of materials. The shortcoming of this approach is that the information is only from the very near surface region, which inhibits access to the characteristic of the hot crack network in the bulk. Here, we report about a new approach, illustrated in the example of low transformation temperature (LTT) weld filler materials, to monitor the entire 3D hot crack network after welding by means of microfocus X-ray computer tomography (μCT). T2 - 10th Conference on Industrial Computed Tomography (iCT 2020) CY - Wels, Austria DA - 04.02.2020 KW - Varestraint testing KW - LTT weld filler materials KW - Hot cracking KW - Welding KW - μCT-analysis PY - 2020 DO - https://doi.org/https://doi.org/10.58286/25121 SN - 1435-4934 VL - 25 IS - 2 SP - 1 EP - 7 PB - NDT.net CY - Kirchwald AN - OPUS4-50341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Hilgenberg, Kai T1 - Effects of inter layer time and build height on resulting properties of 316L stainless steel processed by laser powder bed fusion N2 - Laser powder bed fusion (L-PBF) is the most prominent additive manufacturing (AM) technology for metal part production. Among the high number of factors influencing part quality and mechanical properties, the inter layer time (ILT) between iterative melting of volume elements in subsequent layers is almost completely unappreciated in the relevant literature on L-PBF. This study investigates the effect of ILT with respect to build height and under distinct levels of volumetric energy density (VED) using the example of 316L stainless steel. In-situ thermography is used to gather information on cooling conditions during the process, which is followed by an extensive metallographic analysis. Significant effects of ILT and build height on heat accumulation, sub-grain sizes, melt pool geometries and hardness are presented. Furthermore, the rise of defect densities can be attributed to a mutual interplay of build height and ILT. Hence, ILT has been identified as a crucial factor for L-PBF of real part components especially for those with small cross sections. KW - Laser powder bed fusion (L-PBF) KW - Laser beam melting (LBM) KW - Selective laser melting (SLM) KW - Dwell-time KW - Thermography PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503300 DO - https://doi.org/10.1016/j.addma.2020.101080 SN - 2214-8604 VL - 32 SP - 101080-1 EP - 101080-13 PB - Elsevier CY - Amsterdam AN - OPUS4-50330 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kempf, A. A1 - Hilgenberg, Kai T1 - Influence of sub-cell structure on the mechanical properties of AlSi10Mg manufactured by laser powder bed fusion N2 - AlSi10Mg is one of the most applied alloys for laser powder bed fusion (LPBF) technology, due to its great possibilities for implementing new lightweight concepts such as in automotive industries. For the component design it is necessary to know about the mechanical properties and the mechanical behaviour. The many published strength properties of LPBF processed AlSi10Mg show significant differences up to approximately 225 MPa in ultimate tensile strength (UTS) and 195 MPa in yield strength (YS). To understand these varying properties, a ring trial was carried out manufacturing specimens on 6 LPBF machines with different parameters and build-up strategies. They were studied in the as-built (AB) condition and after heat treatment at 300 °C for 30 min, respectively. For examining the mechanical properties, tensile tests and hardness measurements were carried out. The microstructure was characterized by optical light microscopy (OM), field emission scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The identified differences in strength properties were discussed based on the 4 strengthening mechanism known for metallic materials and at the background of material defects. It was found that the size of the typical sub-cell structure of LPBF AlSi10Mg affected substantially the mechanical properties in the AB condition, in which with decreasing sub-cell size strength increased. If heat treatment was applied, the strength properties decreased and did not differ anymore. Since annealing led to coarsened sub-cells, whereas the grains itself did not change in size, the influence of sub-cell structure on strength was further confirmed. In addition, acicular precipitates in the AB condition were observed at specimens from one LPBF machine showing the lowest tensile elongation. KW - Laser powder bed fusion KW - AlSi10Mg KW - Mechanical properties KW - Microstructure PY - 2020 DO - https://doi.org/10.1016/j.msea.2020.138976 VL - 776 SP - Paper 138976, 12 PB - Elsevier B.V. AN - OPUS4-50316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Javaheri, E. A1 - Kumala, V. A1 - Javaheri, A. A1 - Rawassizadeh, R. A1 - Lubritz, J. A1 - Graf, B. A1 - Rethmeier, Michael T1 - Quantifying Mechanical Properties of Automotive Steels with Deep Learing Based Computer Vision Algorithms N2 - This paper demonstrates that the instrumented indentation test (IIT), together with a trained artificial neural network (ANN), has the capability to characterize the mechanical properties of the local parts of a welded steel structure such as a weld nugget or heat affected zone. Aside from force-indentation depth curves generated from the IIT, the profile of the indented surface deformed after the indentation test also has a strong correlation with the materials’ plastic behavior. The profile of the indented surface was used as the training dataset to design an ANN to determine the material parameters of the welded zones. The deformation of the indented surface in three dimensions shown in images were analyzed with the computer vision algorithms and the obtained data were employed to train the ANN for the characterization of the mechanical properties. Moreover, this method was applied to the images taken with a simple light microscope from the surface of a specimen. Therefore, it is possible to quantify the mechanical properties of the automotive steels with the four independent methods: (1) force-indentation depth curve; (2) profile of the indented surface; (3) analyzing of the 3D-measurement image; and (4) evaluation of the images taken by a simple light microscope. The results show that there is a very good Agreement between the material parameters obtained from the trained ANN and the experimental uniaxial tensile test. The results present that the mechanical properties of an unknown steel can be determined by only analyzing the images taken from its surface after pushing a simple indenter into its surface. KW - Deep learning KW - Computer vision KW - Artificial neural network KW - Clustering KW - Mechanical properties KW - High strength steels KW - Instumented indentation test PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503038 DO - https://doi.org/10.3390/met10020163 VL - 10 IS - 2 SP - 163 PB - MDPI AN - OPUS4-50303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Ulbricht, Alexander A1 - Heinrich, Ph. A1 - Baum, D. A1 - Maierhofer, Christiane A1 - Hilgenberg, Kai T1 - In-Situ Defect Detection in Laser Powder Bed Fusion by Using Thermography and Optical Tomography—Comparison to Computed Tomography N2 - Among additive manufacturing (AM) technologies, the laser powder bed fusion (L-PBF) is one of the most important technologies to produce metallic components. The layer-wise build-up of components and the complex process conditions increase the probability of the occurrence of defects. However, due to the iterative nature of its manufacturing process and in contrast to conventional manufacturing technologies such as casting, L-PBF offers unique opportunities for in-situ monitoring. In this study, two cameras were successfully tested simultaneously as a machine manufacturer independent process monitoring setup: a high-frequency infrared camera and a camera for long time exposure, working in the visible and infrared spectrum and equipped with a near infrared filter. An AISI 316L stainless steel specimen with integrated artificial defects has been monitored during the build. The acquired camera data was compared to data obtained by computed tomography. A promising and easy to use examination method for data analysis was developed and correlations between measured signals and defects were identified. Moreover, sources of possible data misinterpretation were specified. Lastly, attempts for automatic data analysis by data Integration are presented. KW - Laser powder bed fusion (L-PBF) KW - Selective laser melting (SLM) KW - Additive manufacturing (AM) KW - Process monitoring KW - Infrared thermography KW - Optical tomography KW - Computed tomography (CT) KW - Data fusion KW - Lack-of-fusion PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-502417 DO - https://doi.org/10.3390/met10010103 VL - 10 IS - 1 SP - 103 PB - MDPI CY - Basel, Schweiz AN - OPUS4-50241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe T1 - Application of fracture mechanics to welds with crack origin at the weld toe—a review. Part 2: welding residual stresses. Residual and total life assessment N2 - The two-part paper series provides an overview on the state-of-the-art in the application of engineering fracture mechanics to weldments limited to butt and fillet welds with crack initiation at weld toes. In the present second part, one focus is on welding residual stresses, their characteristics and stability under cyclic loading and their effect on structural integrity. Subsequently, features will be addressed which are essential for applying fracture mechanics to overall fatigue life and fatigue strength considerations of weldments. These comprise fatigue life relevant initial crack sizes and multiple crack initiation and Propagation due to various stress peaks along the weld toe. A concept is briefly introduced which covers all these aspects. KW - Fracture mechanics KW - Welding residual stresses KW - Multiple crack propagation KW - Fatigue strength PY - 2020 DO - https://doi.org/10.1007/s40194-019-00816-y VL - 64 IS - 1 SP - 151 EP - 169 PB - Springer AN - OPUS4-50263 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Quality improvement of laser welds on thick duplex plates by laser cladded buttering N2 - Because of its excellent corrosion resistance, high tensile strength and high ductility, duplex stainless steel 2205 offers many areas of application. Though laser beam welding accompanied by high cooling rates, duplex steels tend to perform higher ferrite contents in weld metal as the base metal, which leads to a reduction of ductility and corrosion resistance of the weld joint. To overcome this problem, a solution, based on buttering the plate edges by laser metal deposition (LMD) with material containing higher Ni concentrations prior to laser welding was suggested. In this context different process parameters for LMD process were investigated. In a second step the possibility of welding those edges defect free while achieving balanced austenite-ferrite ratio was verified with metallographic analysis, Electron Backscatter Diffraction (EBSD) and impact testing according to Charpy. T2 - Lasers in Manufacturing (LiM) 2019 CY - Munich, Germany DA - 24.06.2019 KW - Laser Metal Deposition; Laser Beam Welding; Duplex; Stainless Steel PY - 2020 SP - We_A31_4_4-1 EP - We_A31_4_4-6 PB - WLT (Wissenschaftliche Gesellschaft für Lasertechnik) AN - OPUS4-50143 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ö. A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser arc welding of thick high-strength piepline steels of grade X120 with adapted heat input N2 - The influence of heat input and welding speed on the microstructure and mechanical properties of single-pass hybrid laser arc welded 20mm thick plates of high-strength pipeline steel X120 were presented. The heat Input was varied in the range of 1.4 kJ mm−1 to 2.9 kJ mm−1, while the welding speed was changed between 0.5m min−1 and 1.5m min−1. A novel technique of bath support based on external oscillating electromagnetic field was used to compensate the hydrostatic pressure at low welding velocities. A major advantage of this technology is, that the welding speed and thus the cooling time t8/5 can be variated in a wide parameter window without issues regarding the weld root quality. The recommended welding thermal cycles for the pipeline steel X120 can be met by that way. All tested Charpy-V specimens meet the requirements of API 5 L regarding the impact energy. For higher heat inputs the average impact energy was 144 ± 37 J at a testing temperature of −40 °C. High heat Input above 1.6 kJ mm−1 leads to softening in the weld metal and heat-affected-zone resulting in loss of strength. The minimum tensile strength of 915 MPa could be achieved at heat inputs between 1.4 kJ mm−1 and 1.6 kJ mm−1. KW - High-strength low-alloy steel KW - Hybrid laser-arc welding KW - Mechanical-technological properties KW - Microstructure KW - Toughness KW - Pipeline steel of grade X120 PY - 2020 DO - https://doi.org/10.1016/j.jmatprotec.2019.116358 SN - 0924-0136 VL - 275 SP - 116358 PB - Elsevier B.V. AN - OPUS4-50008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunz, C. A1 - Bonse, Jörn A1 - Spaltmann, Dirk A1 - Neumann, C. A1 - Turchanin, A. A1 - Bartolomé, J. F. A1 - Müller, F. A. A1 - Gräf, S. T1 - Tribological performance of metal-reinforced ceramic composites selectively structured with femtosecond laser-induced periodic surface structures N2 - The impact of femtosecond (fs) laser-induced periodic surface structures (LIPSS) on tribological properties was investigated for metal-reinforced ceramic composites (Al2O3-ZrO2-Nb). For this purpose, the metallic niobium (Nb) phase was selectively structured with LIPSS in an air environment with different values of the fs-laser peak fluence by near-infrared fs-laser radiation (λ = 1025 nm, τ = 300 fs, frep = 1 kHz), taking advantage of the different light absorption behavior of ceramic and metal. The tribological performance was evaluated by reciprocating sliding tests in a ball-on-disc configuration using Ringer's solution as lubricant. The surfaces were characterized before and after laser irradiation by optical microscopy, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy and by measuring the contact angle with Ringer's solution. The LIPSS formation resulted in an increased wetting of the surface with the lubricant. Moreover, the selectively structured composite surfaces revealed a coefficient of friction significantly reduced by a factor of ~3 when compared to the non-irradiated surface. Furthermore, the formation of a laser-induced oxidation layer was detected with NbO as the most prominent oxidation state. Selectively structured composites with outstanding mechanical properties and enhanced tribological performance are of particular interest for biomedical applications. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Ceramic matrix composites KW - Tribology PY - 2020 DO - https://doi.org/10.1016/j.apsusc.2019.143917 SN - 0169-4332 SN - 1873-5584 VL - 499 IS - 1 SP - 143917 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-49255 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -