TY - JOUR A1 - Matamoros-Veloza, A. A1 - Stawski, Tomasz A1 - Vargas, S. A1 - Neville, A. T1 - Study of a Local Structure at the Interface between Corrosion Films and Carbon Steel Surface in Undersaturated CO2 Environments JF - ACS Omega N2 - Industries transporting CO2 gas-saturated fluids have infrastructures made of carbon steel. This is a good material with great mechanical properties but prone to corrosion and potential failure. Corrosion in sweet environments involves the formation of FeCO3 as a corrosion film, which is recognized to play a protective role under certain conditions. This work on the dissolution of corrosion films in sweet environments, under acidic and undersaturated conditions, demonstrates that the effects on the integrity of steel are far more significant than the damage observed on the surface of the corrosion film. Our results prove that dissolution of FeCO3 involved the presence of an amorphous phase, the intermediate formation of FeCl2 or FeCl+, and the presence of a phase with short distance atom–atom correlations. The amorphous phase was identified as a mixture of retained γ-Fe and Fe3C. Partially broken α-Fe and Fe3C structures were identified to prove the damage on the material, confirming the interface zone without evident damage on the corrosion film. Dissolution affected both the α-Fe and FeCO3, with the lattice [102̅] from the FeCO3 crystalline structure being the fastest to dissolve. The damage of steel at the molecular scale was evident at the macroscale with pit depths of up to 250 μm. The impact on the integrity of steel can be, therefore, more drastic than frequently reported in industrial operations of CO2 transport industries that use cleaning procedures (e.g., acid treatment, pigging) as part of their operational activities. KW - Steel KW - Corrosion KW - Siderite KW - Diffraction KW - Pair distribution function KW - Synchrotron PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572156 DO - https://doi.org/10.1021/acsomega.2c07631 SN - 2470-1343 VL - 8 IS - 9 SP - 8497 EP - 8504 PB - ACS AN - OPUS4-57215 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hattrick-Simpers, J. A1 - Li, K. A1 - Greenwood, M. A1 - Black, R. A1 - Witt, Julia A1 - Kozdras, M. A1 - Pang, X. A1 - Özcan Sandikcioglu, Özlem T1 - Designing durable, sustainable, high-performance materials for clean energy infrastructure JF - Cell reports. Physical science N2 - Civilization and modern societies would not be possible without manmade materials. Considering their production volumes, their supporting role in nearly all industrial processes, and the impact of their sourcing and production on the environment, metals and alloys are and will be of prominent importance for the clean energy transition. The focus of materials discovery must move to more specialized, application-tailored green alloys that outperform the legacy materials not only in performance but also in sustainability and resource efficiency. This white paper summarizes a joint Canadian-German initiative aimed at developing a materials acceleration platform (MAP) focusing on the discovery of new alloy families that will address this challenge. We call our initiative the “Build to Last Materials Acceleration Platform” (B2L-MAP) and present in this perspective our concept of a three-tiered self-driving laboratory that is composed of a simulation-aided pre-selection module (B2L-select), an artificial intelligence (AI)-driven experimental lead generator (B2L-explore), and an upscaling module for durability assessment (B2L-assess). The resulting tool will be used to identify and subsequently demonstrate novel corrosion-resistant alloys at scale for three key applications of critical importance to an offshore, wind-driven hydrogen plant (reusable electrical contacts, offshore infrastructure, and oxygen evolution reaction catalysts). KW - Material Acceleration Platforms (MAPs) KW - Self-driving-labs (SDLs) KW - Automation KW - Artificial Intelligence (AI) KW - Elektrolyse KW - Structural Materials KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568452 DO - https://doi.org/10.1016/j.xcrp.2022.101200 SN - 2666-3864 VL - 4 IS - 1 SP - 1 EP - 11 PB - Cell Press ; Elsevier CY - Maryland Heights, MO AN - OPUS4-56845 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bulling, Jannis A1 - Jurgelucks, B. A1 - Prager, Jens A1 - Walther, A. T1 - Defect reconstruction in a two-dimensional semi-analytical waveguide model via derivative-based optimization JF - The Journal of the Acoustical Society of America N2 - This paper considers an indirect measurement approach to reconstruct a defect in a two-dimensional waveguide model for a non-destructive ultrasonic inspection via derivative-based optimization. The propagation of the mechanical waves is simulated by the scaled boundary finite element method that builds on a semi-analytical approach. The simulated data are then fitted to given data associated with the reflected waves from a defect which is to be reconstructed. For this purpose, we apply an iteratively regularized Gauss-Newton method in combination with algorithmic differentiation to provide the required derivative information accurately and efficiently. We present numerical results for three kinds of defects, namely, a crack, delamination, and corrosion. The objective function and the properties of the reconstruction method are investigated. The examples show that the parameterization of the defect can be reconstructed efficiently as well as robustly in the presence of noise. KW - Mechanical waves KW - Corrosion KW - Finite-element analysis KW - Ultrasonic testing KW - Nondestructive testing techniques KW - Symbolic computation KW - Materials analysis KW - MATLAB KW - Newton Raphson method PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-565485 DO - https://doi.org/10.1121/10.0013574 VL - 152 IS - 2 SP - 1217 EP - 1229 PB - AIP Publ. CY - Melville, NY AN - OPUS4-56548 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwarz, W. A1 - Wilsch, Gerd A1 - Katsumi, N. A1 - Ebell, Gino A1 - Völker, Tobias T1 - Ion distribution in concrete overlay, mapped by laser induced breakdown spectroscopy (LIBS), modified by an embedded zinc anode JF - MATEC web of conferences N2 - Galvanic corrosion protection by embedded zinc anodes is an accepted technique for the corrosion protection of reinforcing steel in concrete. Galvanic currents flow between the zinc anode and the steel reinforcement due to the potential difference that is in the range of a few hundred mV. The ion distribution was studied on two steel reinforced concrete specimens admixed with 3 wt.% chloride/wt. cement and galvanically protected by a surface applied EZ-anode. On both specimens, a zinc anode was embedded and glued to the concrete surface by a geo-polymer-based chloride-free binder. At one specimen, the EZ-anode was operated for 2,5 years, the EZ-anode at the other specimen was not electrically connected to the reinforcement, this specimen serves as a reference. Both specimens have been stored under identical conditions. The ion distribution between the anode (EZ-ANODE) and cathode (steel reinforcement) was studied by laser-induced breakdown spectroscopy (LIBS) after 7 months, 12 months, and 2,5 years. Results of the LIBS studies on the specimen with activated EZ-anode after 7 months, 12 months, and 2,5 years and of the reference specimen after 2,5 years are reported. Results show that diffusion of ions contributes to the changes in the ion distribution but migration, especially of chlorides towards the EZ-anode is significant despite the weak electric field – several hundred millivolts - generated by the galvanic current. Results show that chloride ions accumulate near the zinc-anode as in water-insoluble zinc-hydroxy chlorides - Simonkollite. T2 - ICCRRR 2022 CY - Capetown, South Africa KW - Corrosion KW - LIBS KW - Zinc KW - Anode PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560576 DO - https://doi.org/10.1051/matecconf/202236404023 SN - 2261-236X VL - 364 SP - 1 EP - 7 PB - EDP Sciences CY - Les Ulis AN - OPUS4-56057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Blank, Robin A1 - Nitschke, Heike A1 - Saliwan Neumann, Romeo A1 - Kranzmann, Axel T1 - Materialographic Preparation of Salt JF - Praktische Metallographie N2 - Molten salt containing systems gain in importance for sustainable energy use and production. For research and development, interactions of molten salts with potential container materials are of major interest. This article introduces preparation procedures to display an intact metal and salt microstructure and their interface using light optical microscopy and scanning electron microscopy. The exemplary material combination is the ternary salt mixture NaCl-KCl-MgCl2 and the low alloyed steel 1.4901 (T92) with a maximum service temperature of 550 °C. These are potential elements/materials for use in latent heat thermal energy storages. KW - Molten salt KW - Corrosion KW - Steel KW - Aging KW - Dry preparation PY - 2021 DO - https://doi.org/10.1515/pm-2022-0058 VL - 59 IS - 10 SP - 628 EP - 640 PB - De Gruyter AN - OPUS4-56048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wetzel, Annica A1 - von der Au, Marcus A1 - Dietrich, P. M. A1 - Radnik, Jörg A1 - Özcan Sandikcioglu, Özlem A1 - Witt, Julia T1 - The comparison of the corrosion behavior of the CrCoNi medium entropy alloy and CrMnFeCoNi high entropy alloy JF - Applied Surface Science N2 - This work presents the determination of the corrosion characteristics of CrCoNi (medium entropy alloy) and CrMnFeCoNi (high entropy alloy) in 0.1 M NaCl and 0.1 M H2SO4. The morphology and chemical composition of the oxide layers formed on CrCoNi and CrMnFeCoNi were comparatively analyzed by scanning Kelvin probe microscopy (SKPFM) and scanning electron microscopy (SEM) and supported with chemical analysis by means of inductively coupled plasma mass spectrometry (ICP-MS) and X-Ray photoelectron spectroscopy (XPS). The analysis of the 3p core level peaks showed that the oxide layer (native and after anodic passivation) on CrCoNi consisted mainly of Cr oxides, while the oxide layer on CrMnFeCoNi was primarily composed of a mixture of Cr and Fe oxides. In addition, XPS was utilized to assess the oxide layer thicknesses. These results were compared to the thicknesses obtained by means of electrochemical impedance spectroscopy (EIS), with both approaches yielding values up to about 4 nm depending on the electrolyte and the alloy. Cyclic polarization measurements indicated superior corrosion resistance of CrCoNi in both aqueous environments compared to CrMnFeCoNi, as well as to AISI 304 stainless steel. KW - Medium entropy alloy KW - High entropy alloy KW - SKPFM KW - XPS KW - Passivation KW - Corrosion PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559902 DO - https://doi.org/10.1016/j.apsusc.2022.154171 SN - 0169-4332 VL - 601 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-55990 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bender, R. A1 - Féron, D. A1 - Mills, D. A1 - Ritter, S. A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - de Graeve, I. A1 - Dugstad, A. A1 - Grassini, S. A1 - Hack, T. A1 - Halama, M. A1 - Han, E.-H. A1 - Harder, T. A1 - Hinds, G. A1 - Kittel, J. A1 - Krieg, R. A1 - Leygraf, C. A1 - Martinelli, L. A1 - Mol, A. A1 - Neff, D. A1 - Nilsson, J.-O. A1 - Odnevall, I. A1 - Paterson, S. A1 - Paul, S. A1 - Prošek, T. A1 - Raupach, M. A1 - Revilla, R. I. A1 - Ropital, F. A1 - Schweigart, H. A1 - Szala, E. A1 - Terryn, H. A1 - Tidblad, J. A1 - Virtanen, S. A1 - Volovitch, P. A1 - Watkinson, D. A1 - Wilms, M. A1 - Winning, G. A1 - Zheludkevich, M. T1 - Corrosion challenges towards a sustainable society JF - Materials and corrosion N2 - A global transition towards more sustainable, affordable and reliable energy systems is being stimulated by the Paris Agreement and the United Nation's 2030 Agenda for Sustainable Development. This poses a challenge for the corrosion industry, as building climate‐resilient energy systems and infrastructures brings with it a long‐term direction, so as a result the long‐term behaviour of structural materials (mainly metals and alloys) becomes a major prospect. With this in mind “Corrosion Challenges Towards a Sustainable Society” presents a series of cases showing the importance of corrosion protection of metals and alloys in the development of energy production to further understand the science of corrosion, and bring the need for research and the consequences of corrosion into public and political focus. This includes emphasis on the limitation of greenhouse gas emissions, on the lifetime of infrastructures, implants, cultural heritage artefacts, and a variety of other topics. KW - Corrosion KW - Corrosion costs KW - Corrosion protection KW - Preventive strategies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554801 DO - https://doi.org/10.1002/maco.202213140 SN - 1521-4176 VL - 73 IS - 11 SP - 1730 EP - 1751 PB - Wiley-VCH CY - Weinheim AN - OPUS4-55480 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromer, Ch. A1 - Schwibbert, K. A1 - Gadicherla, A. K. A1 - Thiele, D. A1 - Nirmalananthan-Budau, Nithiya A1 - Laux, P. A1 - Resch-Genger, Ute A1 - Luch, A. A1 - Tschiche, H. R. T1 - Monitoring and imaging pH in biofilms utilizing a fluorescent polymeric nanosensor JF - Scientific reports N2 - Biofilms are ubiquitous in nature and in the man-made environment. Given their harmful effects on human health, an in-depth understanding of biofilms and the monitoring of their formation and growth are important. Particularly relevant for many metabolic processes and survival strategies of biofilms is their extracellular pH. However, most conventional techniques are not suited for minimally invasive pH measurements of living biofilms. Here, a fluorescent nanosensor is presented for ratiometric measurements of pH in biofilms in the range of pH 4.5–9.5 using confocal laser scanning microscopy. The nanosensor consists of biocompatible polystyrene nanoparticles loaded with pH-inert dye Nile Red and is surface functionalized with a pH-responsive fluorescein dye. Its performance was validated by fluorometrically monitoring the time-dependent changes in pH in E. coli biofilms after glucose inoculation at 37 °C and 4 °C. This revealed a temperature-dependent decrease in pH over a 4-h period caused by the acidifying glucose metabolism of E. coli. These studies demonstrate the applicability of this nanosensor to characterize the chemical microenvironment in biofilms with fluorescence methods. KW - Dye KW - Fluorescence KW - Signal enhancement KW - Sensor KW - Quantum yield KW - Synthesis KW - Nanoparticle KW - Nano KW - Polymer KW - Ph KW - Biofilm KW - MIC KW - Corrosion KW - Microorganism KW - Bacteria PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550751 DO - https://doi.org/10.1038/s41598-022-13518-1 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group CY - London AN - OPUS4-55075 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Steger, S. A1 - Horn, Wolfgang A1 - Eggert, G. A1 - Krekel, C. T1 - Are cellulose ethers safe for the conservation of artwork? New insights in their VOC activity by means of Oddy testing JF - Heritage Science N2 - Cellulose ethers, like methyl cellulose (MC) or hydroxypropyl cellulose (HPC), are widely used in conservation. They also occur as additives and rheology modifiers in various products like dispersions or gels. Do such products release harmful volatile organic compounds (VOC) during their accelerated aging? A mass testing series utilizing the Oddy test of 60 commercial cellulose ethers ranks the products in safe for permanent use (P, no corrosion), only for temporary use (T, slight corrosion), and unsuitable at all (F, heavy corrosion). Results show that 55% of the products passed the test whereas 33% are for temporary use as slight corrosion occurred on at least one metal coupon and only 11% failed the Oddy test. Raman measurements of the corrosion products identified oxides like massicot, litharge, cuprite, and tenorite among carbonates (hydrocerussite, plumbonacrite), and acetates like basic lead acetate, lead acetate trihydrate as well as lead formate as main phases. For example, commercial, industrial Klucel® G (HPC) scored a T rating through slight corrosion on the lead coupon. Basic lead acetate among other phases indicates the presence of acetic acid. Additional measurements of the sample with thermal desorption GC–MS utilizing the BEMMA scheme confirm the high acetic acid outgassing and reveal the presence of a small amount of formaldehyde. KW - Cellulose ether KW - Corrosion KW - Oddy test KW - VOC KW - BEMMA PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-547591 DO - https://doi.org/10.1186/s40494-022-00688-4 SN - 2050-7445 VL - 10 IS - 1 SP - 1 EP - 12 PB - Springer Open AN - OPUS4-54759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Understanding the Anomalous Corrosion Behaviour of 17% Chromium Martensitic Stainless Steel in Laboratory CCS-Environment—A Descriptive Approach JF - MDPI Clean Technologies N2 - To mitigate carbon dioxide emissions CO2 is compressed and sequestrated into deep geological layers (Carbon Capture and Storage CCS). The corrosion of injection pipe steels is induced when the metal is in contact with CO2 and at the same time the geological saline formation water. Stainless steels X35CrMo17 and X5CrNiCuNb16-4 with approximately 17% Cr show potential as injection pipes to engineer the Northern German Basin geological onshore CCS-site. Static laboratory experiments (T = 60 ◦C, p = 100 bar, 700–8000 h exposure time, aquifer water, CO2-flow rate of 9 L/h) were conducted to evaluate corrosion kinetics. The anomalous surface corrosion phenomena were found to be independent of heat treatment prior to exposure. The corrosion process is described as a function of the atmosphere and diffusion process of ionic species to explain the precipitation mechanism and better estimate the reliability of these particular steels in a downhole CCS environment. KW - Corrosion KW - Steel KW - High alloyed steel KW - Corrosion mechanism KW - CCS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545700 DO - https://doi.org/10.3390/cleantechnol4020014 VL - 4 IS - 2 SP - 239 EP - 257 PB - MDPI AN - OPUS4-54570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -