TY - GEN A1 - Kaatz, Rico A1 - Recknagel, Christoph ED - Carbary, L.D. ED - Wolf, A. T. T1 - Advanced evaluation of structural sealant glazing systems by a new system test approach T2 - Durability of building and construction sealants and adhesives: 5th volume N2 - More information about the capability and especially about the durability of structural sealant glazing (SSG) systems are needed. To make a contribution to unanswered questions, a suitable system evaluation test is necessary. The basis for such a test is a load function, which accounts for the decisive loads SSG systems are exposed to during their working life. This paper proposes a general load function for standard SSG systems at central German locations for accelerated durability tests. Decisive loads are determined and different SSG construction types defined. The performance of these SSG systems under exposure to external loads and to a dynamic pendulum impact is investigated via finite element analyses using a hyperelastic material model. The external loads are applied separately and superimposed. Compression, tensile, and shear deformations of the sealant are determined. It is found that the sealant is subjected to normal and shear stresses simultaneously. The requirements for a representative specimen are derived. The results will be taken as basics for the development and the construction of a test facility to evaluate the durability of structural sealant glazing systems. KW - Sealants KW - Structural glazing KW - Decisive loads KW - ANSYS KW - Finite element analysis KW - Hyperelastic KW - Non-linear material KW - Grid study KW - Sealant deformation KW - Load function KW - Performance testing KW - System evaluation KW - Structural sealants KW - Durability PY - 2015 SN - 978-0-8031-7611-9 DO - https://doi.org/10.1520/STP158320140074 SN - 2154-6673 N1 - Serientitel: ASTM Selected Technical Papers – Series title: ASTM Selected Technical Papers VL - 5 IS - STP 1583 SP - 376 EP - 402 PB - ASTM CY - West Conshohocken, PA, USA AN - OPUS4-33868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Recknagel, Christoph A1 - Kaatz, Rico ED - Carbary, L.D. ED - Wolf, A. T. T1 - Exploration and evaluation of the performance and durability of SSG systems by dynamic-mechanical system testing T2 - Durability of building and construction sealants and adhesives: 5th volume N2 - Structural sealant glazing (SSG) is an impressive technical response to the challenges of modern structural design. The evaluation of fitness for use as well as durability is a precondition for approval of SSG-façades by building authorities because of their special safety relevance. However, the potential of the actual evaluation methodology to reproduce performance as well as durability under real use conditions is generally assessed to be limited. The concept so far is criticized as mainly single-loading and incomplete in comparison to the real use conditions. The exercised separation of the in reality interacting loading effects is assessed as insufficient and inadequate to explore performance. Consequently, the performance and capability of SSG-solutions is only fragmentarily explored. However, the most restricting argument so far is the deficit of the actual test methodology for life cycle prognosis under interacting mechanical as well as climatic loads. Because of the limited acceptance, additional structural design conditions are imposed by the authorities. Besides this restriction, there is also an increasing demand by the authorities, architects, and users for determinable working life cycles, not least under economic aspects. That is why knowledge, particularly regarding SSG-performance and durability, must be expanded. Together with partners representing all branches involved in façade engineering (engineering design, sealant producer, applicator, and cladding company) the Federal Institute for Materials Research and Testing (BAM) develops a new system test focused on the substrate–sealant–glass panel interaction. With it, a new comprehensive dynamic–mechanical evaluation methodology already introduced at the fourth Symposium in Anaheim, CA, in 2011 shall be complemented by a performance-related system test. Subject-matter of this contribution is the presentation of a new dynamic–mechanical system test method and its first experimental application on SSG-systems. We describe our approach beginning with the discussion of relevant load effects on sealant joints and with the help of a highly generalized finite element (FE) analysis. Resulting from a parameter study of various load combinations acting on different SSG-construction types, we derive a practicable deformation load function from the decisive load categories taking into account regular as well as extraordinary loads. Assumptions and procedures to quantify their parameter values (regarding the effective direction and order of deformation magnitude affecting the substrate–sealant–glass bond) are discussed. The calculated decisive sealant deformations resulting from the parameter study are validated by simplified mechanical plausibility tests. Subsequently, the transfer of the findings about the substrate–sealant–glass panel bond loading into the design and construction of an adapted system test specimen and the development of a multifunctional test facility is introduced. The multi-functional applicability of the system test device is discussed. On the basis of results during our actual operational checks, first ideas about system performance and durability under superimposed loading are presented. A validation of this new test methodology by comparison to test results of disassembled samples and in situ results is a task for separate research activities. KW - Sealants KW - Structural glazing KW - Performance-oriented test procedure KW - Dynamic–mechanical system test method KW - Superimposed loading KW - Performance evaluation KW - Durability evaluation KW - Performance testing KW - System evaluation KW - Structural sealants PY - 2015 SN - 978-0-8031-7611-9 DO - https://doi.org/10.1520/STP158320140064 SN - 2154-6673 N1 - Serientitel: ASTM Selected Technical Papers – Series title: ASTM Selected Technical Papers VL - 5 IS - STP 1583 SP - 235 EP - 264 PB - ASTM CY - West Conshohocken, PA, USA AN - OPUS4-33867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Maierhofer, Christiane A1 - Krankenhagen, Rainer A1 - Myrach, Philipp A1 - Meinhardt, J. A1 - Kalisch, U. A1 - Hennen, C. A1 - Mecke, R. A1 - Seidl, T. A1 - Schiller, M. ED - Toniolo, L. ED - Boriani, M. ED - Guidi, G. T1 - Monitoring of cracks in historic concrete structures using optical, thermal and acoustical methods T2 - Built heritage: Monitoring conservation management N2 - Cracks are a major issue in the field of cultural heritage. In order to evaluate the significance of a crack, a long term monitoring of the damaged region is required. However, there is a lack of easy to operate tools for such monitoring measures. Therefore, new or existing methods for other applications have to be optimised for cultural heritage investigation. The paper describes the application of such crack observation methods on a historic concrete sculpture. Beside conventional methods, like mapping by hand and ultrasonic depth profiling, a novel tracking system is presented. Furthermore, the suitability of active thermography for the investigation of cracks was investigated. The results show promising prospects for these non-destructive techniques. KW - Crack monitoring KW - Concrete KW - Thermography KW - Crack mapping PY - 2015 SN - 978-3-319-08532-6 SN - 978-3-319-08533-3 DO - https://doi.org/10.1007/978-3-319-08533-3 SN - 2198-7300 SN - 2198-7319 SP - Part II, 93 EP - 102 PB - Springer AN - OPUS4-33851 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Nehls, Irene A1 - Schallschmidt, Kristin A1 - Becker, Roland A1 - Fischer-Tenhagen, C. A1 - Johnen, D. A1 - Leschber, G. A1 - Frese, S. A1 - Neudecker, J. A1 - Walles, T. ED - Schüler, C. ED - Püschel, K. T1 - BIOAIR - Ein interdisziplinäres Projekt zur Bestimmung von Krebsmarkern in der Atemluft T2 - Faszinosum Spürhunde - Quo vadis? N2 - Wie viele Forschergruppen, haben auch wir uns das langfristige Ziel gesetzt, einen Beitrag bei der Beantwortung der Frage zu leisten, was Hunde riechen, wenn sie Krebs erschnüffeln. Dabei sollen die Hunde nicht nur anzeigen, ob eine Atemluftprobe positiv oder negativ ist, sondern sie sollen auch aktiv eingebunden werden in den systematischen Suchprozess nach detektierbaren Biomarkern. So ist geplant, dass mittels eines präparativen Fraktionssammlers definierte Schnitte des Gaschromatogramms einzeln oder in möglichen Kombinationen auf das Adsorbervlies gebracht werden, um im Hundetraining eingesetzt zu werden. In analoger Weise könnte auch mit spezifischen Kandidatensubstanzen verfahren werden. PY - 2015 SN - 978-3-8300-8763-2 N1 - Serientitel: Forschungsergebnisse aus dem Institut für Rechtsmedizin der Universität Hamburg – Series title: Forschungsergebnisse aus dem Institut für Rechtsmedizin der Universität Hamburg VL - 30 SP - 93 EP - 101 PB - Dr. Kovac AN - OPUS4-33165 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Woydt, Mathias A1 - Scholz, Christian ED - Beswick, J.M. T1 - Slip-rolling resistance of alternative steels under high contact pressures in engine oils T2 - Bearing steel technologies: 10th volume, advances in steel technologies for rolling bearings N2 - The inevitable increase of torque or load, because of lightweight approaches, pushes the oil-film temperatures on the teeth flanks of gears above 200°C, and requires alloys with higher strength and toughness properties. Furthermore, the real temperature on surfaces during the physical vapor deposition (PVD) or chemical vapor deposition (CVD) of thin films can exceed the annealing temperature of the state-of-the-art bearing and gear materials, such as AISI 52100 (1.3505), 16MnCr5 (1.7131), 21NiCrMo (1.6523), and 30CrMoV9 (1.7707). Such trends call for slip-rolling-resistant, alternative alloys suited for contact stresses above P0max of >2.2 GPa. The tribological profile under slip-rolling conditions at 120°C in a factory engine oil (SAE 0W-30, ACEA A3/B4, ν120°C = 5.33 mPa, HTHS150°C = 3.0 mPa) until 10 × 106 load cycles between P0max of 2.25 GPa to 3.92 GPa of uncoated 100Cr6 (1.3505, “PBQ”), 102Cr6 (1.2067), Cronidur 30 (1.4108, DESU), 45SiCrMo6 (1.8062, CVEM), 40SiNiCrMo1 [vacuum arc remelting (VAR)], CSS-42L (AMS 5932, vacuum induction melting (VIM)-VAR, and carburized), 36NiCrMoV1-5-7 (CAB), ASP2012 (ASP), and 20MnCr5 (1.7131, carburized) was established in twin disk machines (Amsler-type and 2Disk). The present benchmark illuminates the tribological impact of uncoated bearing steels in comparison to uncoated alternative steel alloys on friction, wear and slip-rolling resistance, as well as load carrying capacity. Iron-based steel alloyed with silicon or molybdenum reduces alloying costs and avoids thermo-chemical treatments. This benchmark suggests considering an extension to fracture toughness from hardness and strength as a relevant property for slip-rolling alloys. If slip-rolling resistant, the wear rates of the metallurgical different steels were more or less within one order of magnitude, but the influence of increasing contact stresses on the tribological profile differed significantly. KW - Slip rolling KW - Bearing steel KW - High toughness steel KW - Silicon KW - Molybdenum KW - Rolling KW - contact fatigue KW - High contact pressure KW - Low friction PY - 2015 SN - 978-0-8031-7605-8 DO - https://doi.org/10.1520/STP158020140018 SN - 2160-2050 N1 - Serientitel: ASTM International - Selected Technical Papers (STP) – Series title: ASTM International - Selected Technical Papers (STP) VL - 1580 SP - 210 EP - 238 AN - OPUS4-33121 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Vogl, Jochen A1 - Rosner, Martin ED - Boschung, D. ED - Bremmer, J.N. T1 - Lead isotope analysis of an ancient voodoo doll T2 - The materiality of magic KW - Archaeometry KW - Isotopes KW - Lead PY - 2015 SN - 978-3-7705-5725-7 SP - 127 EP - 132, Plates 1-5 PB - Wilhelm Fink GmbH & Co. Verlags-KG CY - Paderborn AN - OPUS4-33034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Auersch, Lutz A1 - Rücker, Werner ED - Nielsen, J.C.O. T1 - Mitigation measures against vibration for ballasted tracks - Optimisation of sleepers, sleeper pads and the substructure by combined finite-element boundary-element calculations T2 - Noise and vibration mitigation for rail transportation systems - Notes on numerical fluid mechanics and multidisciplinary design N2 - The ground vibrations, which are generated by trains on different tracks, have been calculated by finite-element boundary-element models. The ballasted track is modelled in detail by the finite element method. The infinite soil is modelled by the boundary element method as a homogeneous or layered half-space. The track-soil system is coupled to a simple rigid mass model of the vehicle so that the vehicle-track interaction is completely included. Transfer functions are calculated in frequency domain without and with vehicle-track interaction, the compliance of the track and the mobilities of the soil at different distances from the track. Finally, the ratios between the ground vibration amplitudes with and without mitigation measures are calculated to quantify the effectiveness of the mitigation measures. Tracks with under-sleeper pads have been investigated in a wide parameter study for the RIVAS project. The main parameters that influence the reduction of ground vibration are the stiffness of the under-sleeper pad, the mass and the width of the sleeper. The softest sleeper pad yields the best reduction of the ground vibration. The influence of the sleeper mass is not so strong, as the characteristic frequency is ruled by the mass of the sleeper and the mass of the wheelset as well. PY - 2015 SN - 978-3-662-44832-8 DO - https://doi.org/10.1007/978-3-662-44832-8_48 VL - 126 SP - 401 EP - 408 PB - Springer CY - Berlin Heidelberg AN - OPUS4-32468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -