TY - CONF A1 - Saleh, Maysoon I. A1 - Kembuan, C A1 - Rühle, Bastian A1 - Graf, C A1 - Resch-Genger, Ute T1 - Gold-shell coated NaYF4:Er3+, Yb3+ nanoparticles for the enhancement of fluorescence emission N2 - In the present work, we aim to explore how far the UCNP emission intensity can be enhanced by the aid of plasmonic interactions using a gold shell. The distance between the UCNP core and the gold shell is varied by adding a silica spacer of different thicknesses. The synthetic conditions for obtaining UCNP@SiO2@Au core-shell nanoparticles with precisely tuneable silica shell thicknesses were investigated. A gold shell on the UCNP@SiO2 nanoparticles is expected to give rise to a noticeable enhancement of particle brightness and fluorescence, given that the thicknesses of the silica shell and the gold coating can be controlled and fine-tuned. First single particle studies revealing shortening of the Er3+ lifetimes suggest that plasmonic enhancement occurs. T2 - 2nd Conference and Spring School on Properties, Design and Applications of Upconversion Nanomaterials CY - Valencia, Spain DA - 02.04.2018 KW - Upconversion nanoparticles KW - Silica coating KW - Plasmonic enhancement PY - 2018 AN - OPUS4-44969 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rühle, Bastian A1 - Resch-Genger, Ute A1 - Kembuan, C A1 - Graf, C T1 - Gold-shell coated NaYF4:Er3+, Yb3+ nanoparticles for the enhancement of fluorescence emission N2 - In the present work, we aim to explore how far the UCNP emission intensity can be enhanced by the aid of plasmonic interactions using a gold shell. The distance between the UCNP core and the gold shell is varied by adding a silica spacer of different thicknesses. The synthetic conditions for obtaining UCNP@SiO2@Au core-shell nanoparticles with precisely tuneable silica shell thicknesses were investigated. A gold shell on the UCNP@SiO2 nanoparticles is expected to give rise to a noticeable enhancement of particle brightness and fluorescence, given that the thicknesses of the silica shell and the gold coating can be controlled and fine-tuned. First single particle studies revealing shortening of the Er3+ lifetimes suggest that plasmonic enhancement occurs. T2 - 2nd Conference and Spring School on Properties, Design and Applications of Upconversion Nanomaterials CY - Valencia, Spain DA - 02.04.2018 KW - Upconversion nanoparticles KW - Silica coating KW - Plasmonic enhancement PY - 2018 AN - OPUS4-44958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -