TY - JOUR A1 - Jablonka, Kevin Maik A1 - Ai, Qianxiang A1 - Al-Feghali, Alexander A1 - Badhwar, Shruti A1 - Bocarsly, Joshua D. A1 - Bran, Andres M. A1 - Bringuier, Stefan A1 - Brinson, L. Catherine A1 - Choudhary, Kamal A1 - Circi, Defne A1 - Cox, Sam A1 - de Jong, Wibe A. A1 - Evans, Matthew L. A1 - Gastellu, Nicolas A1 - Genzling, Jerome A1 - Gil, María Victoria A1 - Gupta, Ankur K. A1 - Hong, Zhi A1 - Imran, Alishba A1 - Kruschwitz, Sabine A1 - Labarre, Anne A1 - Lála, Jakub A1 - Liu, Tao A1 - Ma, Steven A1 - Majumdar, Sauradeep A1 - Merz, Garrett W. A1 - Moitessier, Nicolas A1 - Moubarak, Elias A1 - Mouriño, Beatriz A1 - Pelkie, Brenden A1 - Pieler, Michael A1 - Ramos, Mayk Caldas A1 - Ranković, Bojana A1 - Rodriques, Samuel G. A1 - Sanders, Jacob N. A1 - Schwaller, Philippe A1 - Schwarting, Marcus A1 - Shi, Jiale A1 - Smit, Berend A1 - Smith, Ben E. A1 - Van Herck, Joren A1 - Völker, Christoph A1 - Ward, Logan A1 - Warren, Sean A1 - Weiser, Benjamin A1 - Zhang, Sylvester A1 - Zhang, Xiaoqi A1 - Zia, Ghezal Ahmad A1 - Scourtas, Aristana A1 - Schmidt, K. J. A1 - Foster, Ian A1 - White, Andrew D. A1 - Blaiszik, Ben T1 - 14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon JF - Digital Discovery N2 - Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent studies suggested that these models could be useful in chemistry and materials science. To explore these possibilities, we organized a hackathon. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines. KW - Large Language model KW - Hackathon KW - Concrete KW - Prediction KW - Inverse Design KW - Orchestration PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-589961 DO - https://doi.org/10.1039/d3dd00113j VL - 2 IS - 5 SP - 1233 EP - 1250 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 2D and 3D imaging characterization techniques for porous ceramics N2 - The combination of microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on porous material properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of porosity in ceramics. Moreover, I will show how not-so-novel 2D characterization techniques, based X-ray refraction, can allow a great deal of insights in the damage evolution in microcracked (and porous) ceramics. I will show how X-ray refraction can detect objects (e.g. microcracks) below its own spatial resolution. Finally, I will discuss the link between the microstructural findings and the mechanical properties of porous microcracked ceramics. T2 - Colloques de l"universite' de Limoges, France CY - Limoges, France DA - 17.10.2018 KW - Tomography KW - X-ray refraction KW - Porous ceramics KW - Microcracking PY - 2018 AN - OPUS4-46350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 2D and 3D imaging chracterization techniques for porous ceramics N2 - The combination of microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on porous material properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of porosity in ceramics. Moreover, I will show how not-so-novel 2D characterization techniques, based X-ray refraction, can allow a great deal of insights in the damage evolution in microcracked (and porous) ceramics. I will show how X-ray refraction can detect objects (e.g. microcracks) below its own spatial resolution. Finally, I will discuss the link between the microstructural findings and the mechanical properties of porous microcracked ceramics. T2 - CIMTEC 2018 CY - Perugia, Italy DA - 04.06.2018 KW - Orientation KW - Cordierite KW - Beta-eucrytite KW - Porosity KW - Microcracking KW - Computed tomography KW - X-ray refraction PY - 2018 AN - OPUS4-45119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias T1 - 2D-Photothermal Super Resolution with Sparse Matrix Stacking T2 - SMSI 2021 Proceedings N2 - Thermographic super resolution techniques allow the spatial resolution of defects/inhomogeneities below the classical limit, which is governed by the diffusion properties of thermal wave propagation. In this work, we report on the extension of this approach towards a full frame 2D super resolution technique. The approach is based on a repeated spatially structured heating using high power lasers. In a second post-processing step, several measurements are coherently combined using mathematical optimization and taking advantage of the (joint) sparsity of the defects in the sample T2 - Sensor and Measurement Science International Conference SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Thermography KW - Super-resolution KW - NDT KW - Inspection KW - Image resolution PY - 2021 SN - 978-3-9819376-4-0 DO - https://doi.org/10.5162/SMSI2021/C2.2 VL - SMSI 2021 - Sensors and Instrumentation SP - 183 EP - 184 AN - OPUS4-52589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lecompagnon, Julien A1 - Ahmadi, Samim A1 - Hirsch, Philipp Daniel A1 - Ziegler, Mathias T1 - 2D-Photothermal super-resolution with sparse matrix stacking N2 - Thermographic super resolution techniques allow the spatial resolution of defects/inhomogeneities below the classical limit, which is governed by the diffusion properties of thermal wave propagation. In this work, we re-port on the extension of this approach towards a full frame 2D super resolution technique. The approach is based on a repeated spatially structured heating using high power lasers. In a second post-processing step, several measurements are coherently combined using mathematical optimization and taking advantage of the (joint) sparsity of the defects in the sample. T2 - Sensor and Measurement Science International Conference SMSI 2021 CY - Online meeting DA - 03.05.2021 KW - Thermography KW - Super-resolution KW - NDT KW - Inspection KW - Image resolution PY - 2021 AN - OPUS4-52579 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lay, Vera A1 - Buske, S. A1 - Townend, J. A1 - Kellett, R. A1 - Savage, M. A1 - Schmitt, D. R. A1 - Constantinou, A. A1 - Eccles, J. D. A1 - Gorman, A. A1 - Bertram, M. A1 - Hall, K. A1 - Lawton, D. A1 - Kofman, R. T1 - 3D Active Source Seismic Imaging of the Alpine Fault Zone and the Whataroa Glacial Valley in New Zealand JF - Journal of Geophysical Research: Solid Earth N2 - The Alpine Fault zone in New Zealand marks a major transpressional plate boundary that is late in its typical earthquake cycle. Understanding the subsurface structures is crucial to understand the tectonic processes taking place. A unique seismic survey including 2D lines, a 3D array, and borehole recordings, has been performed in the Whataroa Valley and provides new insights into the Alpine Fault zone down to ∼2 km depth at the location of the Deep Fault Drilling Project (DFDP)-2 drill site. Seismic images are obtained by focusing prestack depth migration approaches. Despite the challenging conditions for seismic imaging within a sediment filled glacial valley and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. A set of several reflectors dipping 40°–56° to the southeast are identified in a ∼600 m wide zone that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at ∼40°, which is interpreted to be the main Alpine Fault reflector located only ∼100 m beneath the maximum drilled depth of the DFDP-2B borehole. At shallower depths (z < 0.5 km), additional reflectors are identified as fault segments with generally steeper dips up to 56°. Additionally, a glacially over-deepened trough with nearly horizontally layered sediments and a major fault (z < 0.5 km) are identified 0.5–1 km south of the DFDP-2B borehole. Thus, a complex structural environment is seismically imaged and shows the complexity of the Alpine Fault at Whataroa. KW - Imaging KW - Signal processing KW - Seismic KW - Borehole KW - DAS PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539163 DO - https://doi.org/10.1029/2021JB023013 VL - 126 IS - 12 SP - 1 EP - 21 PB - American Geophysical Union AN - OPUS4-53916 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritsch, Tobias A1 - Mishurova, Tatiana A1 - Evseleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, C. A1 - Bruno, Giovanni T1 - 3D Analysis of Powder for Laser Beam Melting by Synchrotron X-ray CT N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of complex structures. The quality of the feedstock material receives increasing attention, as it depicts the first part of the L-PBF process chain. The powder quality control in terms of flowability and powder bed packing density is therefore mandatory. In this work, a workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape for three different powder batches. The polydisperse particle size distribution (PSD) was transformed into a statistically equivalent bidisperse PSD. The ratio of the small and large particles helped to understand the powder particle packing density. While the particle shape had a neglectable influence, the particle size distribution was identified as major contributor for the packing density. T2 - AM- Workshop BAM CY - Online meeting DA - 20.04.2021 KW - Additive manufacturing KW - Laser powder bed fusion KW - Powder KW - Particle size distribution KW - Packing density PY - 2021 AN - OPUS4-53477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fritsch, Tobias A1 - Farahbod-Sternahl, L. A1 - Serrano Munoz, Itziar A1 - Léonard, F. A1 - Haberland, C. A1 - Bruno, Giovanni T1 - 3D Computed Tomography Quantifies the Dependence of Bulk Porosity, Surface Roughness, and Re-Entrant Features on Build Angle in Additively Manufactured IN625 Lattice Struts JF - Advanced Engineering Materials N2 - Layer-by-layer additive manufacturing (AM) by means of laser-powder bed Fusion (L-PBF) offers many prospects regarding the design of lattice structures used, for example, in gas turbines. However, defects such as bulk porosity, Surface roughness, and re-entrant features are exacerbated in nonvertical structures, such as tilted struts. The characterization and quantification of these kinds of defects are essential for the correct estimation of fracture and fatigue properties. Herein, cylindrical struts fabricated by L-PBF are investigated by means of X-ray computed tomography (XCT), with the aim of casting light on the dependence of the three kinds of defects (bulk porosity, surface roughness, and re-entrant features) on the build angle. Innovative analysis methods are proposed to correlate shape and position of pores, to determine the angular-resolved Surface roughness, and to quantify the amount of re-entrant surface features, q. A meshing of the XCT surface enables the correlation of q with the classical Surface roughness Pa. This analysis leads to the conclusion that there is a linear correlation between q and Pa. However, it is conjectured that there must be a threshold of surface roughness, below which no re-entrant features can be build. KW - Additive manufacturing KW - Laser powder bed fusion KW - Computed tomography KW - Surface roughness analysis KW - Re-entrant surface feature PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-534728 DO - https://doi.org/10.1002/adem.202100689 IS - 2100689 SP - 1 EP - 8 PB - Wiley-VCH Verlag AN - OPUS4-53472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis for AM Materials N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Integrated Additive Manufacturing center, Politecnico Torino CY - Turin, Italy DA - 14.02.2023 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction PY - 2023 AN - OPUS4-57047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar T1 - 3D imaging and residual stress analysis for AM Materials N2 - Metal Additive Manufacturing (AM) technologies such as Laser Powder Bed Fusion (LPBF) are characterized by layer wise construction, which enable advancements of component design, leading to potential efficiency and performance improvements. However, the rapid cooling rates associated with the process consequently leads to the generation of high magnitude residual stresses (RS). Therefore, a deep understanding of the formation of RS, the influence of process parameters on their magnitude and the impact on mechanical performance is crucial for widespread application. The experimental characterization of these RS is essential for safety related engineering application and supporting the development of reliable numerical models. Diffraction-based methods for RS analysis using high energy synchrotron X-rays and neutrons enable non-destructive spatially resolved characterization of both surface and bulk residual stresses in complex components. This presentation will provide an overview of recent research conducted by the BAM at large scale facilities for the characterization of residual stresses in LPBF metallic alloys. Special focus will be given to the challenges posed by textured LPBF materials for the reliable choice of the diffraction elastic constants (DECs), which is crucial to the accurate calculation of the level of RS. T2 - Seminar at LTDS, Ecole Centrale de Lyon CY - Lyon, France DA - 15.06.2023 KW - Residual stress KW - Additive manufacturing KW - Diffraction methods PY - 2023 AN - OPUS4-57808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D Imaging and residual stress analysis of additively manufactured materials N2 - The focus of the presentation focus will be on 3D imaging by means of X-ray Computed Tomography (XCT) at the lab and at synchrotron, and the non-destructive residual stress (RS) characterization by diffraction of additively manufactured (AM) materials in BAM (Berlin, Germany). The manufacturing defects and high RS are inherent of AM techniques and affect structural integrity of the components. Using XCT the defects size and shape distribution as well as geometrical deviations can be characterized, allowing the further optimization of the manufacturing process. Diffraction-based RS analysis methods using neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk RS in complex components and track their changes following applied thermal or mechanical loads. T2 - The International Symposium on Nondestructive Characterization of Materials 2023 CY - Zurich, Switzerland DA - 15.08.2023 KW - Additive manufacturing KW - Residual stress KW - X-ray computed tomography PY - 2023 AN - OPUS4-58113 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 3D imaging and residual stress analysis of AM Materials N2 - In this seminar, the capabilities for materials characterization at Division 8.5, BAM will be shon. Particular focus will be given to residual stress analysis and defect imaging in additively manufactured materials and components T2 - Skoltech - The 3rd International Workshop of Advanced Manufacturing Technologies CY - Online meeting DA - 18.04.2023 KW - Neutron Diffraction KW - X-ray diffraction KW - X-ray Computed Tomography KW - X-ray refraction radiography KW - Residual stress KW - Additive manufacturing PY - 2023 AN - OPUS4-57360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis of AM materials at BAM N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Chalmers University and Centre for Additive Manufacture (CAM2) CY - Gothenburg, Sweden DA - 19.05.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction KW - X-ray refraction PY - 2022 AN - OPUS4-55019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Ulbricht, Alexander A1 - Scholz, Philipp A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - 3D printing material filled with metal organic frameworks analyzed by synchrotron based absorption edge tomography N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the Bundesanstalt für Materialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography with submicron resolution at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, metal organic frameworks (MOFs) embedded in polymer are characterized using differential tomography. MOFs are microporous structures of metal ions, coordinated by organic linker molecules, that can be used in a broad field of applications, especially in gas storage and catalysis. In this work, polymer embedded MOFs were extruded into filaments, which could be used for 3d-printing to profit from the specific properties of the MOFs in polymeric materials combined with the arbitrary shapes provided by 3d-printing. For the extrusion, different polymer classes like ABS, polyester- and polyetherurethanes, as well as different MOFs (ZIF-8, ZIF-67, HKUST-1) were used to create MOF containing filaments with a nominal diameter of 3.0 mm. Differential tomography at the edges of the Zn, Co, and Cu was then used to find the distribution of the corresponding MOF in the filament and to analyze the shape of the inclusions. T2 - MSE 2018 CY - Darmstadt, Germany DA - 26.09.2018 KW - Absorption edge KW - Tomography KW - Metal organic framework KW - Synchrotron PY - 2018 AN - OPUS4-46429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Buske, S. A1 - Kleine, F. A1 - Townend, J. A1 - Kellett, R. A1 - Savage, M. A1 - Schmitt, D. R. A1 - Constantinou, A. A1 - Eccles, J. A1 - Lawton, D. A1 - Bertram, M. A1 - Hall, K. A1 - Kofman, R. A1 - Gorman, A. T1 - 3D seismic imaging of the Alpine Fault and the glacial valley at Whataroa, New Zealand N2 - The Alpine Fault at the West Coast of the South Island (New Zealand) is a major plate boundary that is expected to rupture in the next 50 years, likely as a magnitude 8 earthquake. The Deep Fault Drilling Project (DFDP) aimed to deliver insight into the geological structure of this fault zone and its evolution by drilling and sampling the Alpine Fault at depth. Here we present results from a seismic survey around the DFDP-2 drill site in the Whataroa Valley where the drillhole almost reached the fault plane. This unique 3D seismic survey includes several 2D lines and a 3D array at the surface as well as borehole recordings. Within the borehole, the unique option to compare two measurement systems is used: conventional three-component borehole geophones and a fibre optic cable (heterodyne Distributed Vibration Sensing system (hDVS)). Both systems show coherent signals but only the hDVS system allowed a recording along the complete length of the borehole. Despite the challenging conditions for seismic imaging within a glacial valley filled with sediments and steeply dipping valley flanks, several structures related to the valley itself as well as the tectonic fault system are imaged. The pre-processing of the seismic data also includes wavefield separation for the zero-offset borehole data. Seismic images are obtained by prestack depth migration approaches. Within the glacial valley, particularly steep valley flanks are imaged directly and correlate well with results from the P-wave velocity model obtained by first arrival travel-time tomography. Additionally, a glacially over-deepened trough with nearly horizontally layered sediments is identified about 0.5 km south of the DFDP-2B borehole. With regard to the expected Alpine fault zone, a set of several reflectors dipping 40-56° to the southeast are identified in a ~600 m wide zone between depths of 0.2 and 1.2 km that is interpreted to be the minimum extent of the damage zone. Different approaches image one distinct reflector dipping at 40°, which is interpreted to be the main Alpine Fault reflector. This reflector is only ~100 m ahead from the lower end of the borehole. At shallower depths (z<0.5 km), additional reflectors are identified as fault segments and generally have steeper dips up to 56°. About 1 km south of the drill site, a major fault is identified at a depth of 0.1-0.5 km that might be caused by the regional tectonics interacting with local valley structures. A good correlation is observed among the separate seismic data sets and with geological results such as the borehole stratigraphy and the expected surface trace of the fault. In conclusion, several structural details of the fault zone and its environment are seismically imaged and show the complexity of the Alpine Fault at the Whataroa Valley. Thus, a detailed seismic characterization clarifies the subsurface structures, which is crucial to understand the transpressive fault’s tectonic processes. T2 - EGU 2021 General Assembly CY - Online meeting DA - 19.04.2021 KW - Imaging KW - Signal processing KW - Seismic KW - Borehole KW - DAS PY - 2021 AN - OPUS4-52614 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thiede, Tobias A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Bruno, Giovanni T1 - 3D shape analysis of powder for laser beam melting by synchrotron X-ray CT JF - Quantum Beam Science N2 - The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density <1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of the particle’s intrinsic porosity, as well as the packing density of micrometric powder used for LBM, have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti–6Al–4V produced by plasma atomization and stainless steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles were comparable in size according to the equivalent diameter. The packing density was lower (i.e., the powder bed contained more voids in between particles) for the Ti–6Al–4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurement technique, proved to be in agreement. KW - Additive manufacturing KW - Laser beam melting KW - Synchrotron computed tomography KW - Powder analysis KW - Imaging PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-474070 DO - https://doi.org/10.3390/qubs3010003 SN - 2412-382X VL - 3 IS - 1 SP - 3, 1 EP - 12 PB - MDPI AN - OPUS4-47407 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Evsevleev, Sergei A1 - Serrano Munoz, Itziar A1 - Gollwitzer, Christian A1 - Bruno, Giovanni T1 - 3D Shape Analysis of Powder for Laser Beam Melting by Synchrotron X-ray CT N2 - The quality of components made by laser beam melting (LBM) additive manufacturing is naturally influenced by the quality of the powder bed. A packing density < 1 and porosity inside the powder particles lead to intrinsic voids in the powder bed. Since the packing density is determined by the particle size and shape distribution, the determination of these properties is of significant interest to assess the printing process. In this work, the size and shape distribution, the amount of particle’s intrinsic porosity as well as the packing density of micrometric powder used for LBM have been investigated by means of synchrotron X-ray computed tomography (CT). Two different powder batches were investigated: Ti-6Al-4V produced by plasma atomization and Stainless Steel 316L produced by gas atomization. Plasma atomization particles were observed to be more spherical in terms of the mean anisotropy compared to particles produced by gas atomization. The two kinds of particles are comparable in size according to the equivalent diameter. The packing density is lower (i.e. the powder bed contains more voids in between particles) for the Ti-6Al-4V particles. The comparison of the tomographic results with laser diffraction, as another particle size measurements techniques, proved agreement. T2 - User Meeting HZB 2018 CY - Berlin, BESSY II DA - 06.12.2018 KW - BAMline KW - Computed tomography KW - Laser beam melting KW - Powder PY - 2018 AN - OPUS4-46933 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lozano, Daniel A1 - Bulling, Jannis A1 - Asokkumar, A. A1 - Gravenkamp, H. A1 - Birk, C. T1 - 3D simulations of ultrasonic waves in plates using the scaled boundary finite element method and high-order transition elements JF - Wave Motion N2 - It can be difficult to efficiently model ultrasonic waves in 3D structures, especially when the computational model needs to account for complex geometries. This contribution presents a solution based on the Scaled Boundary Finite Element Method (SBFEM). It is a numerical tool suitable for elastodynamic problems. A space-tree discretisation, namely quad-trees, is used. This technique allows the decomposition of an image into quadrilaterals or quads, which are extruded to generate the 3D plate geometry. In particular, small quads resolve regions with discontinuities, allowing them to represent fine details in the structure. Moreover, this meshing technique allows for exploiting cell similarities, making the calculation procedure more efficient. The space-tree discretisations are generated from a high-resolution image containing all the information about damaged regions or boundary conditions. The resulting SBFEM polyhedral domains employ transition elements to ensure correct coupling between cells of different sizes. The analytical solution of a cylindrical scatterer serves as a reference to validate the proposed approach. Other examples also demonstrate the validity of the methodology and its flexibility. KW - High-order transition elements KW - Image-based models KW - Wave propagation KW - Scaled boundary finite element method PY - 2023 DO - https://doi.org/10.1016/j.wavemoti.2023.103158 VL - 120 SP - 1 EP - 20 PB - Elsevier B.V. AN - OPUS4-57768 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana T1 - 3D X-ray Imaging and residual stress analysis of materials N2 - The focus of the presentation focus will be on 3D imaging by means of X-ray Computed Tomography (XCT) at the lab and at synchrotron, and the non-destructive residual stress (RS) characterization by diffraction of different kind of materials in FB8.5 Micro-NDT BAM. For instance, the manufacturing defects and high RS are inherent of additively manufacturing techniques and affect structural integrity of the components. Using XCT the defects size and shape distribution as well as geometrical deviations can be characterized, allowing the further optimization of the manufacturing process. Diffraction-based RS analysis methods using neutron and synchrotron X-rays at large scale facilities offer the possibility to non-destructively spatially resolve both surface and bulk RS in complex components and track their changes following applied thermal or mechanical loads. T2 - Seminar at Applied Materials Group at PSI CY - Villigen, Switzerland DA - 13.09.2023 KW - Additive manufacturing KW - Residual stress KW - X-ray computed tomography PY - 2023 AN - OPUS4-58310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dayani, Shahabeddin A1 - Markötter, Henning A1 - Schmidt, Anita A1 - Bruno, Giovanni T1 - 4D imaging of abuse mechanisms in Li-ion batteries N2 - Higher energy density materials are being pushed by the research community to make lithium ion batteries a better competitor of chemical fossil fuels for transport applications. This increases potential risk of lithium ion batteries and therefore safety investigations are highly important for application purposes. Operando Computer Tomography provides a non-destructive investigation method of different abuse mechanisms. Application of X-ray computed tomography (XCT) for studying lithium-ion batteries has gained interest among the research community especially in the past decade [1]. This technique is widely used for ex-situ samples to measure porosity and tortuosity [2], particle size and volume distribution [3] in the graphite anode as well as different cathode materials such as LiCoOx and NiMnCoOx. [4]. In situ measurements of commercial batteries are also often carried out to detect defects induced in a cell by a safety abuse test or manufacturing process [5]. Operando CT of large cells (for example 18650 form factor) is conducted at synchrotron facilities with high flux of high energy photons, however at a cost of details due to the large field of view [6]. Methodik Thanks to their high brilliance, synchrotron beam facilitates us to do a full Computed Tomography in a short time. This enables us to measure batteries while being cycled with a reasonable time resolution to record morphological changes. In this poster we illustrate how one can utilize this ability to investigate abuse mechanisms on an actual commercially available lithium ion battery as well as a home made micro cell. Ergebnisse In this work, lab-based and synchrotron X-ray computed tomography is applied to commercial Li-ion batteries. It is shown how to find most suitable imaging settings to study available lithium-ion batteries on different size scales, from cell level to particle level. We also demonstrate how to optimize contrast as well as both temporal and spatial resolutions to study in-situ and operando processes in a commercial battery using attenuation and phase contrast SXCT. Manufacturing defects and inconsistencies on cell level as well as the electrode and microstructure on material level are shown in our study. Moreover, some abuse conditions are imaged in operando in a commercially available li-ion battery. Diskussion This work has demonstrated various imaging settings using lab and synchrotron based X-ray computed tomography to study in-situ as well as under operando condition, some abuse mechanisms in commercial lithium-ion batteries from cell level to electrode and particle level. T2 - Batterie Forum Deutschland CY - Berlin, Germany DA - 18.01.2023 KW - X-ray Computed tomography KW - Li ion Battery KW - Imaging PY - 2023 AN - OPUS4-57156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kapa, Thomas A1 - Schreier, Andy A1 - Krebber, Katerina T1 - 63 km BOFDA for temperature and strain monitoring JF - Sensors N2 - We demonstrate (and are the first to do so) 63 km Brillouin Optical Frequency-Domain Analysis (BOFDA) for temperature and strain monitoring using a 100 km fiber loop. The use of BOFDA for long-range applications can be considered a novel approach, as previous investigations focused on the utilization of Brillouin Optical Time-Domain Reflectometry and Analysis (BOTDR and BOTDA, respectively). At 51.7 km, a 100 m hotspot (37 °C) was detected without using distributed Raman amplification or image processing. KW - Distributed sensing KW - Stimulated Brillouin scattering KW - Fiber optics sensors PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-449679 DO - https://doi.org/10.3390/s18051600 SN - 1424-8220 VL - 18 IS - 5 SP - 1600, 1 EP - 9 PB - MDPI CY - Basel, Switzerland AN - OPUS4-44967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kapa, Thomas A1 - Schreier, Andy A1 - Krebber, Katerina T1 - A 100-km BOFDA Assisted by First-Order Bi-Directional Raman Amplification JF - Sensors N2 - We present, to our knowledge for the first time, a 100-km Brillouin Optical Frequency-Domain Analysis (BOFDA) employing a 200-km fiber loop. Compared to our previous publication, enhanced sensor length, sensor accuracy and spatial resolution are presented. The performance improvements are achieved by applying distributed Raman amplification (DRA) and a digital high-pass filter. We report on temperature measurements over sensing distances of 75 km and 100 km both with a 12.5-m spatial resolution. Temperature changes of 5 °C have been measured along 75 km sensing fiber. A temperature change of 30 °C has been detected at 99.5 km. KW - Distributed sensing KW - Fiber optics sensors KW - Stimulated Brillouin scattering PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-476577 DO - https://doi.org/10.3390/s19071527 SN - 1424-8220 VL - 19 IS - 7 SP - 1527, 1 EP - 9 PB - MDPI CY - Basel, Switzerland AN - OPUS4-47657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Strangfeld, Christoph T1 - A brief introduction to wind turbine aerodynamics N2 - In general, wind turbines transform the kinetic energy of the wind into electric power. Thereby, the wind turbine blades are facing unsteady loads which are transferred to the hub to generate a rotation of the turbine’s axis. This brief introduction focuses on the aerodynamics of the blades and the corresponding loads. Starting with the basic flow field and loads of an airfoil, terms like stagnation point, boundary layer, Reynolds number, transition, and separation are introduced. For different geometries, lift and drag coefficient curves are discussed. Then, full wings will be considered, including their three-dimensional flow field due to wing tip vortices and crossflows. As a main source of increased loads, unsteady effects are explained in more detail such as gusts, tower passing, earth boundary layer crossing, free stream turbulences, yaw misalignment, etc. At the end, extra loads due to an oscillating free stream are introduced. T2 - QI-Digital: KI-Machbarkeitsstudie Thermografie Rotorblätter CY - Berlin, Germany DA - 13.12.2022 KW - Wind turbine KW - Nondestructive testing KW - Aerodynamics KW - Dynamic stall PY - 2022 AN - OPUS4-56728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bulling, Jannis A1 - Gravenkamp, Hauke T1 - A Combination of the Scaled Boundary Finite Element Method with the Mortar Method N2 - The simulation of ultrasonic waves in a linearly elastic body can be computationally intensive. The reason is the relatively short wavelength compared to the body size for high frequencies. One possible approach to counteract the high computational costs is to decompose the domain into small parts and strive for parallelization. The Mortar Method is a well-established approach for domain decomposition. A rather new approach to discretize the emerging subdomains is the Scaled Boundary Finite Element Method. This semi-analytical method has many attractive properties. Some of these properties are listed subsequently. The grid consists of polygonal elements, which leaves much freedom in the meshing process. A variety of material distributions, including anisotropic materials, can be considered. High-order shape functions can be used for optimal convergence properties. The approach treats singularities at crack tips and corners analytically. Especially in the frequency domain, the Scaled Boundary Finite Element Method reduces the dimension of the approximation because only degrees of freedom which are associated with the boundary of a polygonal element are necessary. Those desirable properties make the method particularly suitable for calculating the dynamic responses in bodies with cracks, as it is essential for many non-destructive testing and structural health monitoring applications. In this contribution, we present a combination of the Scaled Boundary Finite Element Method with the Mortar Method in two dimensions. The presentation starts with a theoretical overview of both approaches. Subsequently, numerical examples demonstrate the stability of the combination for the polygonal boundary of the elements. The numerical examples increase in complexity and are compared to results computed on non-divided domains with the Finite Element Method. T2 - WCCM-ECCOMAS CONGRESS CY - Online meeting DA - 11.01.2021 KW - Ultrasound KW - Numerical Simulation KW - Scaled Boundary Finite Element Method, Mortar Method PY - 2021 AN - OPUS4-52275 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ahmadi, Samim A1 - Ziegler, Mathias A1 - Thiel, Erik A1 - Hirsch, Philipp Daniel A1 - Karagianni, Christina A1 - Burgholzer, P. A1 - Mayr, G. A1 - Jung, P. A1 - Caire, G. T1 - A comparison of different techniques for photothermal super resolution image reconstruction N2 - The separation of two closely located defects in fields of Thermographic NDE is very challenging. The diffusive nature of thermal waves leads to a fundamental limitation in spatial resolution. Therefore, super resolution image reconstruction can be used. A new concerted ansatz based on spatially structured heating and joint sparsity of the signal ensemble allows an improved reconstruction of closely located defects. This new technique has also been studied using 1D laser arrays in active thermography. The post-processing can be roughly described by two steps: 1. Finding a sparse basis representation using a reconstruction algorithm such as the Fourier transform, 2. Application of an iterative joint sparsity (IJOSP) method to the firstly reconstructed data. For this reason, different methods in post-processing can be compared using the same measured data set. The focus in this work was the variation of reconstruction algorithms in step 1 and its influence on the results from step 2. More precise, the measured thermal waves can be transformed to virtual (ultrasound) waves that can be processed by applying ultrasound reconstruction algorithms and finally the super resolution algorithm. Otherwise, it is also possible to make use of a Fourier transform with a subsequent super resolution routine. These super resolution thermographic image reconstruction techniques in post-processing are discussed and evaluated regarding performance, accuracy and repeatability. T2 - 20-th International Conference on Photoacoustic and Photothermal Phenomena CY - Moscow, Russia DA - 07.07.2019 KW - Super resolution KW - Virtual wave KW - Laser thermography KW - 1d laser KW - Joint sparsity KW - Laser array KW - VCSEL array KW - High-power laser KW - Fourier transform KW - Dimension reduction PY - 2019 AN - OPUS4-48592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsamos, Athanasios A1 - Evsevleev, Sergei A1 - Fioresi, Rita A1 - Faglioni, Francesco A1 - Bruno, Giovanni T1 - A Complete Strategy to Achieve High Precision Automatic Segmentation of Challenging Experimental X‐Ray Computed Tomography Data Using Low‐Resemblance Synthetic Training Data JF - Advanced Engineering Materials N2 - It is shown that preconditioning of experimental X‐ray computed tomography (XCT) data is critical to achieve high‐precision segmentation scores. The challenging experimental XCT datasets and deep convolutional neural networks (DCNNs) are used that are trained with low‐resemblance synthetic XCT data. The material used is a 6‐phase Al–Si metal matrix composite‐reinforced with ceramic fibers and particles. To achieve generalization, in our past studies, specific data augmentation techniques were proposed for the synthetic XCT training data. In addition, two toolsets are devised: (1) special 3D DCNN architecture (3D Triple_UNet), slicing the experimental XCT data from multiple views (MultiView Forwarding), the i.S.Sy.Da.T.A. iterative segmentation algorithm, and (2) nonlocal means (NLM) conditioning (filtering) for the experimental XCT data. This results in good segmentation Dice scores across all phases compared to more standard approaches (i.e., standard UNet architecture, single view slicing, standard single training, and NLM conditioning). Herein, the NLM filter is replaced with the deep conditioning framework BAM SynthCOND introduced in a previous publication, which can be trained with synthetic XCT data. This leads to a significant segmentation precision increase for all phases. The proposed methods are potentially applicable to other materials and imaging techniques. KW - Automatic Segmentation KW - XCT KW - Artificial Intelligence KW - Synthetic Training Data KW - i.S.Sy.Da.T.A. KW - BAM SynthMAT KW - BAM SynthCOND KW - Triple UNet KW - Convolutional Neural Network (DCNN) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590912 DO - https://doi.org/10.1002/adem.202301030 SN - 1438-1656 VL - 26 IS - 2 SP - 1 EP - 9 PB - Wiley online library AN - OPUS4-59091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Ulbricht, Alexander A1 - Fritsch, Tobias A1 - Sprengel, Maximilian A1 - Evans, Alexander A1 - Kromm, Arne A1 - Madia, Mauro ED - Bruno, Giovanni T1 - A Critical Discussion on the Diffraction-Based Experimental Determination of Residual Stress in AM Parts T2 - Structural integrityofadditive manufactured materials and parts N2 - As opposed to reviewing results on experimental determination of residual stress by diffraction, this paper discusses the open issues when dealing with residual stress determination in additive manufactured parts, in particular those manufactured with laser powder bed fusion techniques. Three points are addressed in detail: (a) the proper determination of the strain-free reference d0, (b) the problem of the determination of the principal axes, and (c) the use of the correct diffraction elastic constants. It is shown that all methods to determine the strain-free reference d0 suffer from caveats, and care must be taken in evaluating the most suitable for the problem being tackled. In addition, it is shown that, in some systems, the principal axes do correspond to the geometrical axes of the specimen, but this needs to be systematically checked, especially in the case of uni- or bidirectional hatching strategies. Finally, the need to experimentally determine the proper diffraction elastic constants is underlined, especially in the case of strongly textured specimens, which again depends on the deposition strategy. T2 - ASTM ICAM 2020 – ASTM International Conference on Additive Manufacturing CY - Online meeting DA - 16.11.2020 KW - Additive Manufacturing KW - Diffraction KW - Residual Stress PY - 2020 DO - https://doi.org/10.1520/STP163120190148 VL - STP1631 SP - 122 EP - 138 PB - ASTM International CY - USA AN - OPUS4-51347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oster, Simon A1 - Breese, Philipp Peter A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon T1 - A deep learning framework for defect prediction based on thermographic in-situmonitoring in laser powder bed fusion JF - Journal of Intelligent Manufacturing N2 - The prediction of porosity is a crucial task for metal based additive manufacturing techniques such as laser powder bed fusion. Short wave infrared thermography as an in-situ monitoring tool enables the measurement of the surface radiosity during the laser exposure. Based on the thermogram data, the thermal history of the component can be reconstructed which is closely related to the resulting mechanical properties and to the formation of porosity in the part. In this study, we present a novel framework for the local prediction of porosity based on extracted features from thermogram data. The framework consists of a data pre-processing workflow and a supervised deep learning classifier architecture. The data pre-processing workflow generates samples from thermogram feature data by including feature information from multiple subsequent layers. Thereby, the prediction of the occurrence of complex process phenomena such as keyhole pores is enabled. A custom convolutional neural network model is used for classification. Themodel is trained and tested on a dataset from thermographic in-situ monitoring of the manufacturing of an AISI 316L stainless steel test component. The impact of the pre-processing parameters and the local void distribution on the classification performance is studied in detail. The presented model achieves an accuracy of 0.96 and an f1-Score of 0.86 for predicting keyhole porosity in small sub-volumes with a dimension of (700 × 700 × 50) μm3. Furthermore, we show that pre-processing parameters such as the porosity threshold for sample labeling and the number of included subsequent layers are influential for the model performance. Moreover, the model prediction is shown to be sensitive to local porosity changes although it is trained on binary labeled data that disregards the actual sample porosity. KW - Laser Powder Bed Fusion (PBF-LB/M, L-PBF) KW - Selective Laser Melting (SLM) KW - SWIR thermography KW - Online monitoring KW - Flaw detection KW - Machine learning KW - Convolutional neural networks (CNN) PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575148 DO - https://doi.org/10.1007/s10845-023-02117-0 SN - 0956-5515 SP - 1 EP - 20 PB - Springer AN - OPUS4-57514 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilling, Richard A1 - Oehrl, A. A1 - Wischerhoff, E. A1 - Schukar, Marcus T1 - A fibre optic temperature sensor based on thermoresponsive polymer T2 - Proceedings of SPIE 12643 N2 - We present a temperature sensor based on a polymer exhibiting a Lower Critical Solution Temperature (LCST) in aqueous solution encapsulated in a capillary. Parameters are chosen such that the solution exhibits a cloud point in a temperature range of 30° C to 39°C. The characteristic of thermoresponsive polymers with an LCST, is that above that temperature phase separation of the polymer takes place which leads to a temperature-dependent formation of a cloudy suspension. An optical intensity measurement over the desired temperature range is established by an increase of optical attenuation inside the polymer solution caused by a rising temperature. For our purpose, the polymer capillary is connected to transmitter and receiver via a Polymer Optical Fibre (POF). Our intensity measurement is, to the best of our knowledge, a novel method and can be considered simple when compared to existing fibre-based temperature measurement techniques. Due to the lack of electrical components at the probe, this sensor is suitable for measurements in strong electromagnetic fields and environments for which flying sparks are hazardous, i.e., inflammable fluids or gases. Furthermore, all manufactured sensors share the same temperature dependence and, therefore, are well-suited for comparative measurement, e.g., flow measurement systems. With the given temperature range, a body temperature measurement is also suitable. T2 - European Workshop on Optical Fibre Sensors (EWOFS 2023) CY - Mons, Belgium DA - 23.05.2023 KW - Thermoresponsive polymer KW - Aqueous polymer solution KW - Temperature sensor KW - LCST KW - POF PY - 2023 DO - https://doi.org/https://doi.org/10.1117/12.2678418 SP - 12643-69 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-57735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid-structure interaction in the scaled Boundary finite element method for prismatic Structures N2 - The Scaled Boundary Finite Element Method (SBFEM) for prismatic structures is an efficient method for the simulation of acoustic behavior. Hence a further development of the method is of great interest. The wave propagation can be calculated for isotropic and anisotropic materials in solids. As for many applications the acoustic behavior in fluids and the behavior in case of fluid-structure interaction (FSI) is subject of research, the implementation of a fluid model in SBFEM for prismatic structures is needed. In case of FSI the coupling between fluid and solid domains can be performed without additional effort when describing both domains in the same variables. Hence a displacement-based fluid description is used. As the discretized formulation leads to spurious modes, a penalty method to suppress the unphysical behavior is chosen. To validate the derived model a comparison with analytical solutions of purely fluid domains is made. As to verify that in case of FSI the model shows the right behavior, dispersion curves of water-filled pipes are calculated and compared to results obtained with Comsol. T2 - 89th GAMM Annual Meeting CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Fluid-Structure Interaction KW - Penalty Parameter PY - 2018 AN - OPUS4-45260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wasmer, Paul A1 - Krome, Fabian A1 - Bulling, Jannis A1 - Prager, Jens T1 - A fluid model for the simulation of fluid‐structure interaction in the Scaled Boundary Finite Element Method for prismatic structures JF - Proceedings in applied mathematics and mechanics : PAMM N2 - The Scaled Boundary Finite Element Method is known as an efficient method for the simulation of ultrasonic wave propagation. As to investigate acoustic wave behavior in case of fluid‐structure interaction, a fluid model is implemented in the SBFEM for prismatic structures. To omit coupling terms a displacement‐based formulation is used. Spurious modes, which occur in the solution, are suppressed using a penalty parameter. To verify this formulation dispersion curves obtained with Comsol Multiphysics are compared to results of SBFEM. The results of both methods are in very good agreement T2 - GAMM 2018 CY - Munich, Germany DA - 19.03.2018 KW - Scaled Boundary Finite Element Method KW - Penalty Parameter KW - Fluid-Structure Interaction KW - Guided Waves PY - 2018 DO - https://doi.org/10.1002/pamm.201800139 VL - 18 IS - 1 SP - e201800139 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-47063 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Burger, M. A1 - Neitzel, F. T1 - A Four-Point Bending Test Apparatus for Measurement- and Model-based Structural Analysis T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics EXTENDED ABSTRACTS N2 - By means of a small-scale truss bridge, the ability of the Measurement- and Model-based Structural Analysis to detect and localize damage was examined. Although there was no noteworthy difficulty in detecting damage, it turned out that damage localization responds sensitively to systematic influences, i.e. non-modelled properties of the mechanical model. Therefore, another experiment is being conducted to re-examine the Measurement- and Model-based Structural Analysis. For this purpose, the bending test is carried out as it has been already theoretically respectively numerically discussed. In this attempt, the systematic influences such as residual stress are kept as low as possible. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Damage detection KW - Adjustment calculation KW - Finite element method PY - 2019 SN - 978-80-261-0876-4 SP - 63 EP - 64 CY - Pilsen, Czech Republic AN - OPUS4-49290 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Burger, M. A1 - Neitzel, F. T1 - A Four-Point Bending Test Apparatus for Measurement- and Model-based Structural Analysis N2 - By means of a small-scale truss bridge, the ability of the Measurement- and Model-based Structural Analysis to detect and localize damage was examined. Although there was no noteworthy difficulty in detecting damage, it turned out that damage localization responds sensitively to systematic influences, i.e. non-modelled properties of the mechanical model. Therefore, another experiment is being conducted to re-examine the Measurement- and Model-based Structural Analysis. For this purpose, the bending test is carried out as it has been already theoretically respectively numerically discussed. In this attempt, the systematic influences such as residual stress are kept as low as possible. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Damage detection KW - Adjustment calculation KW - Finite element method PY - 2019 AN - OPUS4-49291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, Cheng-Chieh A1 - Weisbrich, S. A1 - Burger, M. A1 - Neitzel, F. ED - Zemčík, R. T1 - A four-point bending test apparatus for measurement- and model-based structural analysis JF - Materials Today: Proceedings N2 - By means of a small-scale truss bridge, the ability of the Measurement- and Model-based Structural Analysis to detect and localise damage was examined in. Although there was no noteworthy difficulty in detecting damage, it turned out that damage localisation responds sensitively to systematic influences, i.e. non-modelled properties of the mechanical model. Therefore, another experiment is being conducted to re-examine the Measurement- and Model-based Structural Analysis. For this purpose, the bending test is carried out as it has been already theoretically respectively numerically discussed in. In this attempt, the systematic influences such as residual stress are kept as low as possible. T2 - 36th Danubia Adria Symposium on Advances in Experimental Mechanics CY - Pilsen, Czech Republic DA - 24.09.2019 KW - Damage detection KW - Adjustment calculation KW - Finite element method KW - Integrated analysis PY - 2020 UR - http://www.sciencedirect.com/science/article/pii/S2214785320326432 DO - https://doi.org/10.1016/j.matpr.2020.04.028 SN - 2214-7853 VL - 32 IS - 2 SP - 156 EP - 161 PB - Elsevier Ltd. AN - OPUS4-51551 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Niederleithinger, Ernst A1 - Niederleithinger, Ernst A1 - Katzenbach, R. A1 - Hillmann, S. A1 - Schallert, M. A1 - Unseld, H. A1 - Willmes, M. ED - Bullock, P. ED - Verbeek, G. ED - Paikowsky, S. ED - Tara, D. T1 - A Framework for Nondestructive Testing Used in Foundation Reuse Projects T2 - Stress Wave Theory and Testing Methods for Deep Foundations, 10th International Conferenece N2 - The reuse of existing foundations is considered in various construction Projects to save time and costs while avoiding unnecessary interference with other underground objects. Because the design and as-built drawings might not be complete and questions may arise regarding the condition of the foundations, a detailed investigation is a prerequisite for the planning process in most cases. Nondestructive testing (NDT) techniques are a core part of this endeavor. The processes and procedure for foundation reuse planning are not yet standardized, and the possibilities and limitations of NDT methods are not known to many planners and stakeholders. The German research Project REFUND (2014–2016) has developed charts for the planning and Investigation process that consider available standards and the current state of the art in NDT. These charts are separately available for single and strip, slab, and pile foundations. Available NDT methods have been compiled and evaluated for specific tasks at these foundation types, including their respective limitations. The procedures have been successfully tested in two real-world projects. The results from these projects enable planners to improve the reliability of the process while potentially saving significant resources. This paper discusses the procedures for pile foundations and demonstrates the use of various NDT methods in a project on the reuse of electrical tower foundations. KW - Foundation reuse KW - Pile integrity testing KW - Parallel seismic PY - 2019 SN - 978-0-8031-7667-6 DO - https://doi.org/10.1520/STP161120170159 VL - 1611 SP - 238 EP - 253 PB - ASTM International CY - West Conshohoken, PA, USA AN - OPUS4-48795 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bulling, Jannis A1 - Gravenkamp, H. A1 - Birk, C. T1 - A high-order finite element technique with automatic treatment of stress singularities by semi-analytical enrichment JF - Computer Methods in Applied Mechanics and Engineering N2 - This paper presents an approach to the automatic enrichment of finite elements in the vicinity of a stress singularity. The enrichment consists of semi-analytical singular modes constructed using the Scaled Boundary Finite Element Method (SBFEM). In contrast to analytical methods, the SBFEM provides modes for inhomogeneous and anisotropic materials without additional effort. The finite element basis can be of arbitrary order and remains unaltered by the enrichment. The approach requires enrichment in only one layer of elements around a node. Due to the compatibility of SBFEM with FEM, there is no Need for transitional elements, and there are no parasitic terms. The approach is tested for several benchmark problems. The stress intensity factors are computed based on techniques inspired by the SBFEM. The proposed procedure is compared to a Standard finite element implementation and shows a significant improvement in the error of the displacement field for problems involving singular stresses. KW - Enriched finite element method KW - Scaled boundary finite element method KW - Stress intensity factors KW - Singular stress PY - 2019 DO - https://doi.org/10.1016/j.cma.2019.06.025 VL - 355 SP - 135 EP - 156 PB - Elsevier B.V. AN - OPUS4-48979 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Charmi, Amir A1 - Mustapha, Samir A1 - Yilmaz, Bengisu A1 - Heimann, Jan A1 - Prager, Jens T1 - A Machine Learning Based-Guided Wave Approach for Damage Detection and Assessment in Composite Overwrapped Pressure Vessels JF - Research and review journal of nondestructive testing N2 - The applications of composite overwrapped pressure vessels (COPVs) in extreme conditions, such as storing hydrogen gases at very high pressure, impose new requirements related to the system's integrity and safety. The development of a structural health monitoring (SHM) system that allows for continuous monitoring of the COPVs provides rich information about the structural integrity of the component. Furthermore, the collected data can be used for different purposes such as increasing the periodic inspection intervals, providing a remaining lifetime prognosis, and also ensuring optimal operating conditions. Ultimately this information can be complementary to the development of the envisioned digital twin of the monitored COPVs. Guided waves (GWs) are preferred to be used in continuous SHM given their ability to travel in complex structures for long distances. However, obtained GW signals are complex and require advanced processing techniques. Machine learning (ML) is increasingly utilized as the main part of the processing pipeline to automatically detect anomalies in the system's integrity. Hence, in this study, we are scrutinizing the potential of using ML to provide continuous monitoring of COPVs based on ultrasonic GW data. Data is collected from a network of sensors consisting of fifteen Piezoelectric (PZT) wafers that were surface mounted on the COPV. Two ML algorithms are used in the automated evaluation procedure (i) a long short-term memory (LSTM) autoencoder for anomaly detection (defects/impact), and (ii) a convolutional neural network (CNN) model for feature extraction and classification of the artificial damage sizes and locations. Additional data augmentation steps are introduced such as modification and addition of random noise to original signals to enhance the model's robustness to uncertainties. Overall, it was shown that the ML algorithms used were able to detect and classify the simulated damage with high accuracy. T2 - 13th European Conference on Non-Destructive Testing (ECNDT) 2023 CY - Lisbon, Portugal DA - 03.07.2023 KW - Machine learning KW - Structural health monitoring KW - COPV KW - Guided waves KW - Damage localization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590789 DO - https://doi.org/10.58286/28079 SN - 2941-4989 VL - 1 IS - 1 SP - 1 EP - 6 PB - NDT.net CY - Mayen AN - OPUS4-59078 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Charmi, Amir A1 - Mustapha, Samir A1 - Yilmaz, Bengisu A1 - Heimann, Jan A1 - Prager, Jens T1 - A Machine Learning Based-Guided Wave Approach for Damage Detection and Assessment in Composite Overwrapped Pressure Vessels N2 - The applications of composite overwrapped pressure vessels (COPVs) in extreme conditions, such as storing hydrogen gases at very high pressure, impose new requirements related to the system's integrity and safety. The development of a structural health monitoring (SHM) system that allows for continuous monitoring of the COPVs provides rich information about the structural integrity of the component. Furthermore, the collected data can be used for different purposes such as increasing the periodic inspection intervals, providing a remaining lifetime prognosis, and also ensuring optimal operating conditions. Ultimately this information can be complementary to the development of the envisioned digital twin of the monitored COPVs. Guided waves (GWs) are preferred to be used in continuous SHM given their ability to travel in complex structures for long distances. However, obtained GW signals are complex and require advanced processing techniques. Machine learning (ML) is increasingly utilized as the main part of the processing pipeline to automatically detect anomalies in the system's integrity. Hence, in this study, we are scrutinizing the potential of using ML to provide continuous monitoring of COPVs based on ultrasonic GW data. Data is collected from a network of sensors consisting of fifteen Piezoelectric (PZT) wafers that were surface mounted on the COPV. Two ML algorithms are used in the automated evaluation procedure (i) a long short-term memory (LSTM) autoencoder for anomaly detection (defects/impact), and (ii) a convolutional neural network (CNN) model for feature extraction and classification of the artificial damage sizes and locations. Additional data augmentation steps are introduced such as modification and addition of random noise to original signals to enhance the model's robustness to uncertainties. Overall, it was shown that the ML algorithms used were able to detect and classify the simulated damage with high accuracy. T2 - European Conference on Non-Destructive Testing (ECNDT) CY - Lisbon, Portugal DA - 03.07.2023 KW - Guided waves KW - Structural Health Monitoring KW - Machine learning KW - Damage localization KW - COPV PY - 2023 AN - OPUS4-58687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Ebell, Gino T1 - A machine learning‑based data fusion approach for improved corrosion testing JF - Surveys in Geophysics N2 - This work presents machine learning-inspired data fusion approaches to improve the non-destructive testing of reinforced concrete. The principal effects that are used for data fusion are shown theoretically. Their effectiveness is tested in case studies carried out on largescale concrete specimens with built-in chloride-induced rebar corrosion. The dataset consists of half-cell potential mapping, Wenner resistivity, microwave moisture and ground penetrating radar measurements. Data fusion is based on the logistic Regression algorithm. It learns an optimal linear decision boundary from multivariate labeled training data, to separate intact and defect areas. The training data are generated in an experiment that simulates the entire life cycle of chloride-exposed concrete building parts. The unique possibility to monitor the deterioration, and targeted corrosion initiation, allows data labeling. The results exhibit an improved sensitivity of the data fusion with logistic regression compared to the best individual method half-cell potential. KW - Corrosion KW - Potential mapping KW - Machine learning PY - 2019 DO - https://doi.org/10.1007/s10712-019-09558-4 SN - 1573-0956 SN - 0169-3298 VL - 41 IS - 3 SP - 531 EP - 548 PB - Springer Nature AN - OPUS4-48799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krautz, M. A1 - Beyer, M. A1 - Jäschke, C. A1 - Schinke, L. A1 - Waske, Anja A1 - Seifert, J. T1 - A Magnetocaloric Booster Unit for Energy-Efficient Air-Conditioning JF - Multidisciplinary Digital Publishing Institute - MDPI - Crystals (Special Issue: Advances in Caloric Materials) N2 - A concept for the application of a magnetocaloric device in energy-efficient air conditioners is introduced. In order to evaluate this concept, a test stand has been developed equipped with a magnetic field source providing about a 1.5-T flux density change into which different Regenerator geometries can be implemented and evaluated. A processing route for the production of profiled magnetocaloric LaFeSiMn-based composite plates by tape casting is presented. The processed plates show a maximum isothermal entropy change of about 3.8 J kg−1 K−1 at a magnetic field change of 1.5 T at 285 K. The hydraulic and thermal performance of regenerator geometries that can be realized by profiled plates is assessed by calculations. KW - Magnetocaloric effect KW - Regenerator KW - Air-conditioning KW - Solid state cooling KW - Tape casting PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-480926 DO - https://doi.org/10.3390/cryst9020076 VL - 9 IS - 2 SP - 76 EP - 91 PB - MDPI AN - OPUS4-48092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oesch, Tyler A1 - Landis, E. A1 - Kuchma, D. ED - Lura, P. T1 - A methodology for quantifying the impact of casting procedure on anisotropy in fiber-reinforced concrete using X-ray CT JF - Materials and Structures N2 - Fiber-reinforced concretes (FRCs) offer significant improvements in tensile strength and durability compared to most other concrete mixes. However, for safe and efficient use of FRC in large structures, anisotropy of fiber orientation needs to be understood and properly controlled. In this project, both cored samples extracted from a FRC slab and FRC samples cast individually in molds were assessed using X-ray computed tomography (CT) and measurements of fiber orientation were extracted from the resulting CT images. These results showed that fibers within the slab were highly anisotropic in orientation while fibers in individually cast samples showed a much more heterogeneous distribution of orientations. This indicates that fiber orientation is highly dependent on the casting process and suggests that FRC can only be safely and efficiently utilized if anisotropic fiber orientation is properly accounted for during design and optimized casting methods are used during construction. KW - Anisotropic fiber orientation KW - Computed tomography KW - Fiber-reinforced concrete KW - UHPC KW - Hessian analysis KW - Order parameter PY - 2018 UR - https://rdcu.be/OR6k DO - https://doi.org/10.1617/s11527-018-1198-8 SN - 1359-5997 SN - 1871-6873 N1 - xxx VL - 51 IS - 3 SP - Article 73, 1 EP - 13 PB - Springer Netherlands CY - Dordrecht, Niederlande AN - OPUS4-45045 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Landis, E. A1 - Hassefras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - A Microstructural Basis for Diffuse Ultrasound in Concrete T2 - Proceedings of NDT-CE 2022 N2 - Attenuation of ultrasonic signals in concrete has the potential to carry much information about the microstructure of the material. In this work a series of concrete specimens of varying porosities and pore size distributions were internally imaged with x-ray computed tomography (CT), and then subsequently examined with throughtransmission ultrasound. The CT images were used to quantify both capillary porosity of cement paste as well as internal interfaces that are likely to produce elastic wave scattering. Ultrasound signals were represented as a diffusion process such that absorption and scattering attenuation could be isolated. As implemented, the diffusion model was a poor predictor of capillary porosity, while diffusivity was a reasonable predictor of scattering interfaces. Diffusivity was found to scale extremely well with small scale porosity, which made it a good predictor of compressive strength. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - X-ray tomography KW - Ultrasound PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563371 UR - https://www.ndt.net/article/ndtce2022/paper/61592_manuscript.pdf SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tschöke, K. A1 - Mueller, I. A1 - Memmolo, V. A1 - Sridaran Venkat, R. A1 - Golub, M. A1 - Eremin, A. A1 - Moix-Bonet, M. A1 - Möllenhoff, K. A1 - Lugovtsova, Yevgeniya A1 - Moll, J. A1 - Freitag, S. ED - Rizzo, P. ED - Milazzo, A. T1 - A Model-Assisted Case Study Using Data from Open Guided Waves to Evaluate the Performance of Guided Wave-Based Structural Health Monitoring Systems T2 - Lecture Notes in Civil Engineering - EWSHM 2022 N2 - Reliability assessment of Structural Health Monitoring (SHM) systems poses new challenges pushing the research community to address many questions which are still open. For guided wave-based SHM it is not possible to evaluate the system performance without taking into account the target structure and applied system parameters. This range of variables would result in countless measurements. Factors like environmental conditions, structural dependencies and wave characteristics demand novel solutions for performance analysis of SHM systems compared to those relying on classical non-destructive evaluation. Such novel approaches typically require model-assisted investigations which may not only help to explain and understand performance assessment results but also enable complete studies without costly experiments. Within this contribution, a multi input multi output approach using a sparse transducer array permanently installed on a composite structure to excite and sense guided waves is considered. Firstly, the method and the analysis of path-based performance assessment are presented considering an open-access dataset from the Open Guided Wave platform. Then, a performance analysis of a guided wave-based SHM system using Probability of Detection is presented. To explain some unexpected results, the model-assisted investigations are used to understand the physical phenomena of wave propagation in the test specimen including the interaction with damage. Finally, issues and future steps in SHM systems’ performance assessment and their development are discussed. T2 - 10th European Workshop on Structural Health Monitoring (EWSHM 2022) CY - Palermo, Italy DA - 04.07.2022 KW - Performance assessment KW - Ultrasonic Guided Waves KW - Open Guided Waves Platform PY - 2022 SN - 978-3-031-07257-4 DO - https://doi.org/10.1007/978-3-031-07258-1 SN - 2366-2557 VL - 2 SP - 938 EP - 944 PB - Springer CY - Cham, Switzerland AN - OPUS4-55270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Fritsch, Tobias T1 - A Multiscale Analysis of Additively Manufactured Lattice Structures N2 - Additive Manufacturing (AM) in terms of laser powder-bed fusion (L-PBF) offers new prospects regarding the design of parts and enables therefore the production of lattice structures. These lattice structures shall be implemented in various industrial applications (e.g. gas turbines) for reasons of material savings or cooling channels. However, internal defects, residual stress, and structural deviations from the nominal geometry are unavoidable. In this work, the structural integrity of lattice structures manufactured by means of L-PBF was non-destructively investigated on a multiscale approach. A workflow for quantitative 3D powder analysis in terms of particle size, particle shape, particle porosity, inter-particle distance and packing density was established. Synchrotron computed tomography (CT) was used to correlate the packing density with the particle size and particle shape. It was also observed that at least about 50% of the powder porosity was released during production of the struts. Struts are the component of lattice structures and were investigated by means of laboratory CT. The focus was on the influence of the build angle on part porosity and surface quality. The surface topography analysis was advanced by the quantitative characterisation of re-entrant surface features. This characterisation was compared with conventional surface parameters showing their complementary information, but also the need for AM specific surface parameters. The mechanical behaviour of the lattice structure was investigated with in-situ CT under compression and successive digital volume correlation (DVC). The Deformation was found to be knot-dominated, and therefore the lattice folds unit cell layer wise. The residual stress was determined experimentally for the first time in such lattice structures. Neutron diffraction was used for the non-destructive 3D stress investigation. The principal stress directions and values were determined in dependence of the number of measured directions. While a significant uni-axial stress state was found in the strut, a more hydrostatic stress state was found in the knot. In both cases, strut and knot, seven directions were at least needed to find reliable principal stress directions. KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Surface roughness analysis KW - Computed tomography PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-470418 DO - https://doi.org/10.25932/publishup-47041 SP - 1 EP - 97 PB - Universitätsbibliothek Potsdam CY - Potsdam AN - OPUS4-53476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Trogadas, P. A1 - Cho, J. I. S. A1 - Rasha, L. A1 - Lu, X. A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Manke, I. A1 - Shearing, P. R. A1 - Brett, D. J. L. A1 - Coppens, M. O. T1 - A nature-inspired solution for water management in flow fields for electrochemical devices JF - Energy & Environmental Science N2 - A systematic, nature-inspired chemical engineering approach is employed to solve the issue of flooding in electrochemical devices. The mechanism of passive water transport utilized by lizards living in arid environments is leveraged to design flow-fields with a microchannel structure on their surface, through which capillary pressure rapidly removes the water generated in the electrochemical device. This water management strategy is implemented in proton exchange membrane fuel cells (PEMFCs) with a lunginspired flow-field, which ensures uniform distribution of reactants across the catalyst layer. Jointly, this nature-inspired approach results in flood-free, stable operation at 100% RH and a B60% increase in current (B1.9 A cm-2) and peak power density (B650 mW cm−2) compared to current PEMFCs with a flood-prone, serpentine flow-field (B0.8 A cm-2 and 280 mW cm-2, respectively). This significant advance allows for PEMFC operation at fully humidified conditions. KW - Neutron imaging KW - X-ray tomography KW - Fuel cell PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596662 DO - https://doi.org/10.1039/d3ee03666a VL - 17 SP - 2007 EP - 2017 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59666 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kowarik, Stefan A1 - Bogula, A1 - Boitano, A1 - Carla, A1 - Pithan, A1 - Schafer, A1 - Wilming, A1 - Zykov, A1 - Pithan, T1 - A novel 3D printed radial collimator for x-ray diffraction JF - Review of Scientific Instruments N2 - We demonstrate the use of a 3D printed radial collimator in X-ray powder diffraction and surface sensitive grazing incidence X-ray diffraction. We find a significant improvement in the overall Signal to background ratio of up to 100 and a suppression of more than a factor 3⋅10⁵ for undesirable Bragg reflections generated by the X-ray “transparent” windows of the sample environment. The background reduction and the removal of the high intensity signals from the windows, which limit the detector’s dynamic range, enable significantly higher sensitivity in experiments within sample environments such as vacuum chambers and gas- or liquid-cells. Details of the additively manufactured steel collimator geometry, alignment strategies using X-ray fluorescence, and data analysis are also briefly discussed. The flexibility and affordability of 3D prints enable designs optimized for specific detectors and sample environments, without compromising the degrees of freedom of the diffractometer. KW - 3D printing PY - 2019 DO - https://doi.org/10.1063/1.5063520 SN - 0034-6748 VL - 90 IS - 3 SP - 035102, 1 EP - 8 PB - AIP AN - OPUS4-48171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Pérez Alonso, M. A1 - Albarrán Sanz, J. A1 - Dinkel, M. A1 - Heckel, Thomas A1 - Kotschate, Daniel A1 - Cabeza, Sandra A1 - Senaneuch, J. A1 - Heikkila, I. A1 - Toscanelli, O. T1 - A novel approach for rating fatigue-initiating inclusions in highly demanding steel (INCAFAT) T2 - EU publications N2 - INCAFAT project aimed to improve existing fatigue damage models by establishing the most suitable combination of measurement techniques to characterise harmful inclusion populations in highly demanding steels. The different inclusion assessments carried out confirm that, chemical composition, secondary metallurgy and manufacturing route affect content, nature, size and shape of inclusions. According to the FEM model, inclusions produce an alteration of the stress field in their surrounding region, which can promote a fatigue failure. Experimental work on fatigue testing has demonstrated that depending on the stressed direction fatigue failures in highly demanding steels could be produced by different types of inclusions. Fractography analyses confirmed that meso-inclusions harmful in fatigue cannot be rated by standard methods, nor 10 MHz ultrasonic testing (macro) or micro-cleanness assessments. The necessity of rating these meso-inclusions has led to critical evaluation of Extreme Value Analysis according to ASTM E2283-08 and the development of high frequency immersion ultrasonic testing. EVA methodology based on inclusion width can be applied reliably when principal stress is parallel to the rolling direction. On the contrary, if inclusions are testing in the elongated directions its fails. On the other hand, the guidelines and recommendations for high frequency ultrasonic testing have been compiled in a new European standard draft. This method based on focal beam probes and high-resolution devices is able to provide information on meso-inclusion distribution. KW - Material characterisation KW - Non-destructive testing KW - Ultrasonic testing KW - Cleanliness PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-479219 UR - https://publications.europa.eu/en/publication-detail/-/publication/6bd25206-316a-11e8-b5fe-01aa75ed71a1/language-en/format-PDF/source-68610160 SN - 978-92-79-76985-6 DO - https://doi.org/10.2777/473350 SN - 1831-9424 SN - 1018-5593 SP - 1 EP - 154 AN - OPUS4-47921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tsamos, Athanasios A1 - Evsevleev, Sergei A1 - Fioresi, R. A1 - Faglioni, F. A1 - Bruno, Giovanni T1 - A novel iterative algorithm to improve segmentations with deep convolutional neural networks trained with synthetic X-ray computed tomography data (i.S.Sy.Da.T.A) JF - Computational Materials Science N2 - We propose a novel iterative segmentation algorithm (i.S.Sy.Da.T.A: Iterative Segmentation Synthetic Data Training Algorithm) employing Deep Convolutional Neural Networks and synthetic training data for X-ray tomographic reconstructions of complex microstructures. In our method, we reinforce the synthetic training data with experimental XCT datasets that were automatically segmented in the previous iteration. This strategy produces better segmentations in successive iterations. We test our algorithm with experimental XCT re constructions of a 6-phase Al-Si Matrix Composite reinforced with ceramic fibers and particles. We perform the analysis in 3D with a special network architecture that demonstrates good generalization with synthetic training data. We show that our iterative algorithm returns better segmentations compared to the standard single training approach. More specifically, phases possessing similar attenuation coefficients can be better segmented: for Al2O3 fibers, SiC particles, and Intermetallics, we see an increase of the Dice score with respect to the classic approach: from 0.49 to 0.54, from 0.66 to 0.72, and from 0.55 to 0.66 respectively. Furthermore, the overall Dice score increases from 0.77 to 0.79. The methods presented in this work are also applicable to other materials and imaging techniques. KW - Metal matrix composites (MMC) KW - Multi-phase materials KW - 3D imaging KW - Dice score KW - Automatic segmentation KW - Deep convolutional neural network (DCNN) KW - Modified U-net architectures PY - 2023 DO - https://doi.org/10.1016/j.commatsci.2023.112112 SN - 0927-0256 VL - 223 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-57482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Serrano Munoz, Itziar A1 - Fernandez, R. A1 - Gonzalez-Doncel, G. A1 - Garces, G. T1 - A paradigm shift in the description of creep in metals can only occur through multi-scale imaging N2 - The description of creep in metals has reached a high level of complexity; fine details are revealed by all sorts of characterization techniques and different theoretical models. However, to date virtually no fully microstructure-driven quantitative description of the phenomenon is available. This has brought to interesting inconsistencies; the classic description of (secondary) creep rests on the so-called power law, which however: a- has a pre-factor spanning over 10 orders of magnitude; b- has different reported exponents for the same material; c- has no explanation for the values of such exponents. Recently, a novel description (the so-called Solid State Transformation Creep (SSTC) Model) has been proposed to tackle the problem under a different light. The model has two remarkable features: 1- it describes creep as the accumulation of elementary strains due to dislocation motion; 2- it predicates that creep is proceeding by the evolution of a fractal arrangement of dislocations. Such description, however, needs a great deal of corroborating evidence, and indeed, is still incomplete. To date, we have been able to observe and somehow quantify the fractal arrangement of microstructures through Transmission Electron Microscopy (TEM), observe the accumulation of dislocations at grain boundaries by EBSD-KAM (Electron Back-Scattered Diffraction-Kernel Angular Misorientation) analysis, quantify the kinetic character (solid state transformation) of experimental creep curves, and estimate the sub-grain size of the fractal microstructure through X-ray refraction techniques. All pieces of the mosaic seem to yield a consistent picture: we seem being on the right path to reconstruct the whole elephant by probing single parts of it. What is still missing is the bond between the various scales of investigation. T2 - Korrelative Materialcharakterisierung 2022 CY - Dresden, Germany DA - 13.10.2022 KW - X-ray refraction KW - EBSD KW - Alloys KW - TEM KW - SEM PY - 2022 AN - OPUS4-56163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bayerlein, Bernd A1 - Hanke, T. A1 - Muth, Thilo A1 - Riedel, Jens A1 - Schilling, Markus A1 - Schweizer, C. A1 - Skrotzki, Birgit A1 - Todor, A. A1 - Moreno Torres, Benjami A1 - Unger, Jörg F. A1 - Völker, Christoph A1 - Olbricht, Jürgen T1 - A Perspective on Digital Knowledge Representation in Materials Science and Engineering JF - Advanced Engineering Materials N2 - The amount of data generated worldwide is constantly increasing. These data come from a wide variety of sources and systems, are processed differently, have a multitude of formats, and are stored in an untraceable and unstructured manner, predominantly in natural language in data silos. This problem can be equally applied to the heterogeneous research data from materials science and engineering. In this domain, ways and solutions are increasingly being generated to smartly link material data together with their contextual information in a uniform and well-structured manner on platforms, thus making them discoverable, retrievable, and reusable for research and industry. Ontologies play a key role in this context. They enable the sustainable representation of expert knowledge and the semantically structured filling of databases with computer-processable data triples. In this perspective article, we present the project initiative Materials-open-Laboratory (Mat-o-Lab) that aims to provide a collaborative environment for domain experts to digitize their research results and processes and make them fit for data-driven materials research and development. The overarching challenge is to generate connection points to further link data from other domains to harness the promised potential of big materials data and harvest new knowledge. KW - Data infrastructures KW - Digital representations KW - Digital workflows KW - Knowledge graphs KW - Materials informatics KW - Ontologies KW - Vocabulary providers PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546729 DO - https://doi.org/10.1002/adem.202101176 SN - 1438-1656 SP - 1 EP - 14 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-54672 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -