TY - JOUR A1 - Crouzier, L. A1 - Feltin, N. A1 - Delvallée, A. A1 - Pellegrino, Francesco A1 - Maurino, V. A1 - Cios, Grzegorz A1 - Tokarski, T. A1 - Salzmann, Christoph A1 - Deumer, J. A1 - Gollwitzer, C. A1 - Hodoroaba, Vasile-Dan T1 - Correlative analysis of the dimensional properties of bipyramidal titania nanoparticles by complementing electron microscopy with other methods N2 - In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano‐bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron‐transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM‐in‐SEM (or T‐SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X‐ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab‐initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration. KW - Nanoparticles KW - Complex-shape KW - Bipyramid KW - Electron microscopy KW - AFM KW - Size measurements KW - TKD KW - STEM-in-SEM KW - SAXS KW - Nanoparticle concentration KW - Correlative analysis PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539888 DO - https://doi.org/10.3390/nano11123359 SN - 2079-4991 VL - 11 IS - 12 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-53988 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pellegrino, Francesco A1 - Ortel, Erik A1 - Mielke, Johannes A1 - Schmidt, R. A1 - Maurino, V. A1 - Hodoroaba, Vasile-Dan T1 - Customizing New Titanium Dioxide Nanoparticles with Controlled Particle Size and Shape Distribution: A Feasibility Study Toward Reference Materials for Quality Assurance of Nonspherical Nanoparticle Characterization N2 - An overview is given on the synthesis of TiO2 nanoparticles with well-defined nonspherical shapes (platelet like, bipyramidal, and elongated), with the focus on controlled, reproducible synthesis, as a key requirement for the production of reference materials with homogeneous and stable properties. Particularly with regard to the nanoparticle shapes, there is a high need of certified materials, solely one material of this type being commercially available since a few months (elongated TiO2). Further, measurement approaches with electron microscopy as the golden method to tackle the nanoparticle shape are developed to determine accurately the size and shape distribution for such nonspherical particles. A prerequisite for accurate and easy (i.e., automated) image analysis is the sample preparation, which ideally must ensure a deposition of the nanoparticles from liquid suspension onto a substrate such that the particles do not overlap, are solvent-free, and have a high deposition density. Challenges in the Synthesis of perfectly monodispersed and solvent-free TiO2 nanoparticles of platelet and acicular shapes are highlighted as well as successful measurement approaches on how to extract from 2D projection electron micrographs the most accurate spatial information, that is, true 3D size, for example, of the bipyramidal nanoparticles with different geometrical orientations on a substrate. KW - Nanoparticles KW - Titanium dioxide KW - Reference materials KW - Standardisation KW - Particle size and shape distribution PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-538849 DO - https://doi.org/10.1002/adem.202101347 VL - 24 IS - 6 SP - 1 EP - 10 PB - Wiley-VCH AN - OPUS4-53884 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cant, D. J. H. A1 - Müller, Anja A1 - Clifford, C. A. A1 - Unger, Wolfgang A1 - Shard, A. G. T1 - Summary of ISO/TC 201 Technical Report 23173—Surface chemical analysis—Electron spectroscopies—Measurement of the thickness and composition of nanoparticle coatings N2 - ISO Technical Report 23173 describes methods by which electron spectroscopies, including X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES) and synchrotron techniques, can be employed to calculate the Coating thicknesses and compositions of nanoparticles. The document has been developed to review and outline the current state-of-the-art for such measurements. Such analyses of core–shell nanoparticles are common within the literature, however the methods employed are varied; the relative advantages and disadvantages of These methods, and the optimal usage of each may not be clear to the general analyst. ISO Technical Report 23173 aims to clarify the methods that are available, describe them in clear terms, exhibit examples of their use, and highlight potential issues users may face. The information provided should allow analysts of electron spectroscopy data to make clear choices regarding the appropriate analysis of electron spectroscopy data from coated nanoparticle systems and provide a basis for understanding and comparing results from different methods and systems. KW - Electron spectroscopy KW - Core-shell KW - Nanoparticles KW - ISO 23173 KW - XPS KW - Thickness KW - Composition PY - 2021 DO - https://doi.org/10.1002/sia.6987 SN - 0142-2421 VL - 53 IS - 10 SP - 893 EP - 899 PB - John Wiley & Sons Ltd AN - OPUS4-52976 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seher, Julia A1 - Fröba, M. T1 - Shape matters: The effect of particle morphology on the fast-charging performance of LiFePO4/C nanoparticle composite electrodes N2 - For the successful use of lithium-ion batteries in automotive applications, reliable availability of high storage capacity and very short recharging times are essential. In order to develop the perfect battery for a certain application, structure–property relationships of each active material must be fully understood. LiFePO4 is of great interest due to its fast-charging capability and high stability regarding its thermal resistance and chemical reactivity. The anisotropic lithium-ion diffusion through the LiFePO4 crystal structure indicates a strong dependence of the electrochemical performance of a nanostructured active material on particle morphology. In this paper, the relationship of the particle morphology and fast-charging capability of LiFePO4/C core/shell nanoparticles in half-cells was studied. For this purpose, a new multistep synthesis strategy was developed. It involves the combination of a solvothermal synthesis followed by an in situ polymer coating and thermal calcination step. Monodisperse rodlike LiFePO4 nanoparticles with comparable elongation along the b-axis (30–50 nm) and a varying aspect ratio c/a (2.4–6.9) were obtained. A strong correlation of the fast-charging capability with the aspect ratio c/a was observed. When using LiFePO4 nanoparticles with the smallest aspect ratio c/a, the best electrochemical performance was received regarding the specific capacity at high C-rates and the cycling stability. A reduction of the aspect ratio c/a by 30% (3.6 to 2.4) was found to enhance the charge capacity at 10 C up to an order of magnitude (7.4–73 mA h·g–1). KW - LiFePO4 KW - Schnellladung KW - Nanoparticles KW - Carbon KW - Chemical synthesis KW - Electrochemical cells KW - Materials PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533004 DO - https://doi.org/10.1021/acsomega.1c03432 SN - 2470-1343 VL - 6 IS - 37 SP - 24062 EP - 24069 PB - American Chemical Society CY - Washington, DC AN - OPUS4-53300 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hoche, E. A1 - Stock, V. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Sieg, H. T1 - Intestinal and hepatic effects of iron oxide nanoparticles N2 - Iron oxide nanoparticles gain increasing attention due to their broad industrial use. However, safety concerns exist since their effects on human cells are still under investigation. The presence of iron oxide nanoparticles in the food pigment E172 has been shown recently. Here, we studied four iron oxide nanoparticles, one food pigment E172 and the ionic control FeSO4 regarding dissolution in biological media, uptake and transport, and cellular effects in vitro in human intestinal Caco-2 and HepaRG hepatocarcinoma cells. The iron oxide nanoparticles passed the gastrointestinal passage without dissolution and reached the intestine in the form of particles. Minor uptake was seen into Caco-2 cells but almost no transport to the basolateral site was detected for any of the tested particles. HepaRG cells showed higher particle uptake. Caco-2 cells showed no alterations in reactive oxygen species production, apoptosis, or mitochondrial membrane potential, whereas two particles induced apoptosis in HepaRG cells, and one altered mitochondrial membrane potential at non-cytotoxic concentrations. No correlation between physicochemical particle characteristics and cellular effects was observed, thus emphasizing the Need for case-by-case assessment of iron oxide nanoparticles. KW - Nanoparticles PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521651 DO - https://doi.org/10.1007/s00204-020-02960-7 VL - 95 IS - 3 SP - 895 EP - 905 PB - Springer AN - OPUS4-52165 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pu, Y. A1 - Celorrio, V. A1 - Stockmann, Jörg M. A1 - Sobol, Oded A1 - Sun, Z. A1 - Wang, W. A1 - Lawrence, M. J. A1 - Radnik, Jörg A1 - Russel, A. E. A1 - Hodoroaba, Vasile-Dan A1 - Huang, L. A1 - Rodriguez, P. T1 - Surface galvanic formation of Co-OH on Birnessite and its catalytic activity for the oxygen evolution reaction N2 - Low-cost, high-efficient catalysts for water splitting can be potentially fulfilled by developing earthabundant metal oxides. In this work, surface galvanic formation of Co-OH on K0.45MnO2 (KMO) was achieved via the redox reaction of hydrated Co2+ with crystalline Mn4+. The synthesis method takes place at ambient temperature without using any surfactant agent or organic solvent, providing a clean, green route for the design of highly efficient catalysts. The redox reaction resulted in the formation of ultrathin Co-OH nanoflakes with high electrochemical surface area. X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) analysis confirmed the changes in the oxidation state of the bulk and surface species on the Co-OH nanoflakes supported on the KMO. The effect of the anions, such as chloride, nitrate and sulfate, on the preparation of the catalyst was evaluated by electrochemical and spectrochemical means. XPS and Time of flight secondary ion mass spectrometry (ToF-SIMS) analysis demonstrated that the layer of CoOxHy deposited on the KMO and its electronic structure strongly depend on the anion of the precursor used during the synthesis of the catalyst. In particular, it was found that Cl- favors the formation of Co-OH, changing the rate-determining step of the reaction, which enhances the catalytic activity towards the OER, producing the most active OER catalyst in alkaline media. KW - Nanoparticles KW - Oxygen evolution reaction (OER) KW - Catalysis KW - ToF-SIMS KW - XPS KW - K-rich Birnessite (K0.45MnO2) PY - 2021 DO - https://doi.org/10.1016/j.jcat.2021.02.025 VL - 396 SP - 304 EP - 314 PB - Elsevier Inc. AN - OPUS4-52328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cano Murillo, Natalia A1 - Ghasem Zadeh Khorasani, Media A1 - Silbernagl, Dorothee A1 - Hahn, Marc Benjamin A1 - Hodoroaba, Vasile-Dan A1 - Sturm, Heinz T1 - Nanomechanical study of polycarbonate/boehmite nanoparticles/epoxy ternary composite and their interphases N2 - Thermoplastic modified thermosets are of great interest especially due to their improved fracture toughness. Comparable enhancements have been achieved by adding different nanofillers including inorganic particles such as nanosized boehmite. Here, we present a nanomechanical study of two composite systems, the first comprising a polycarbonate (PC) layer in contact with epoxy resin (EP) and the second consisting of a PC layer containing boehmite nanoparticles (BNP) which is also in contact with an EP layer. The interaction between PC and EP monomer is tested by in situ Fourier transformed infrared (FT-IR) analysis, from which a reaction induced phase separation of the PC phase is inferred. Both systems are explored by atomic force microscopy (AFM) force spectroscopy. AFM force-distance curves (FDC) show no alteration of the mechanical properties of EP at the interface to PC. However, when a PC phase loaded with BNP is put in contact with an epoxy system during curing, a considerable mechanical improvement exceeding the rule of mixture was detected. The trend of BNP to agglomerate preferentially around EP dominated regions and the stiffening effect of BNP on EP shown by spatial resolved measurements of Young's modulus, suggest the effective presence of BNP within the EP phase. KW - Composites KW - Mechanical properties KW - Nanoparticles KW - Thermoplastics KW - Thermosets PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-515965 DO - https://doi.org/10.1002/app.50231 SN - 0021-8995 SN - 1097-4628 VL - 138 IS - 12 SP - 1 EP - 11 PB - Wiley CY - New York, NY AN - OPUS4-51596 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -