TY - CONF A1 - Orell, S. A1 - Faruqui, N. A1 - Rissler, J. A1 - Marek, N. A1 - Kalbermatter, D. A1 - Scholtz, Lena A1 - Resch-Genger, Ute A1 - Elowsson Rendin, L. A1 - Vasilatou, K. A1 - Shaw, M. A1 - Karedal, M. A1 - Larsson-Callerfelt, A.-K. T1 - Differential toxicities of particulate matter components linked to air pollution and adverse health effects N2 - There are significant differences in toxicity of PM components and cellular responses that can be linked to adverse health effects. Soot and copper oxide induced toxicity, reduced metabolic activity, increased ROS and altered immune response. Increased ROS generation and mitochondrial dysfunctions are well known features in COPD pathology. Toxicity of individual airborne particles can be used to better understand adverse health effects and improve air quality guidelines. T2 - ERS International Congress 2021 CY - Online meeting DA - 05.09.2021 KW - Particulate matter KW - Toxicity KW - Airborne particles KW - Air pollution KW - Inflammation KW - Epithelial cell PY - 2021 DO - https://doi.org/10.1183/13993003.congress-2021.PA3195 N1 - The abstract of the poster presentation was published in: European Respiratory Journal 2021; 58: Suppl. 65, PA3195. AN - OPUS4-53134 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Imrie, F. E. A1 - Almtoft, K. P. A1 - Jeppesen, C. S. A1 - Louring, S. A1 - Ortel, Erik A1 - Hodoroaba, Vasile-Dan A1 - Gibson, I. R. T1 - Biocompatibility of DC magnetron-sputtered TiO2 coatings with nano-scale morphology and controlled phase composition on glass substrates N2 - SETNanoMetro, a European Seventh Framework project, seeks to develop standard synthetic routes and metrological characterisation methods for the development and production of TiO2 nanoparticles and nano-sized coatings with highly-defined, homogeneous and reproducible characteristics. These materials are being tested for their potential in selected technological applications, including as biomaterials, specifically as coatings on dental or orthopaedic metallic prostheses. This study aimed to assess how variations in nano-scale morphology and phase composition of TiO2 coatings affect their biocompatibility in vitro. Pulsed DC magnetron sputtering was used to deposit a layer of Ti metal followed by a layer of TiO¬2 on standard glass microscope slides. The substrate bias voltage was varied during deposition to control the morphology and phase composition of the TiO2 layers. In order of increasing substrate bias voltage, the phase compositions of the TiO2 layers were: predominantly anatase, mixed anatase/rutile, and predominantly rutile, as confirmed by XRD. Examination of the coating cross-sections by SEM revealed feather-like columnar structures in the thin (950 nm thick) and thick (1550 nm thick) anatase coatings and in the mixed anatase/rutile coating (900 nm thick). In the rutile coating (730 nm thick), the columns were denser and had largely lost their feather-like structure. Top-view SEM showed square-pyramidal morphology of the columns in the anatase coatings, with columns generally 100 nm or smaller in size (thin coating) or up to 200 nm across (thick coating). In the mixed anatase/rutile coating, the top-view showed less regular columnar morphology with more elongated columns (up to approx. 100 nm by 200 nm). In the rutile coating, the top-view showed a less ordered, pebble-like morphology. MG-63 human osteoblast-like cells and RAW 264.7 murine macrophage cells were cultured on the TiO2-coated substrates for 24 or 72 h before quantification of cell proliferation using the WST-1 cell proliferation assay. A toxic response was defined as a reduction in cell viability of greater than 30%. After 24 h culture, proliferation of MG-63 cells was significantly greater than the control (p < 0.05) on the thin anatase and mixed anatase/rutile coatings. After 72 h of culture no significant difference to the control was observed. For RAW 264.7 cells, proliferation was non-significantly decreased compared to the control on all coatings except the rutile coating after 24 h. After 72 h, RAW 264.7 proliferation was significantly decreased (p < 0.01) to 68% and 61% of the control for the thick and thin anatase coatings, respectively, indicating a toxic response. The results indicate that nano-sized TiO2 coatings show different biocompatibility to different test cell types, with a dependence upon coating phase composition and morphology. T2 - 2016 MRS (Materials Research Society) Fall Meeting CY - Boston, MA, USA DA - 27.11.2016 KW - Biocompatibility KW - TiO2 coating KW - In vitro KW - Cell proliferation KW - Toxicity PY - 2016 AN - OPUS4-38427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Tracking silver nanoparticles: ultra-small silver refunctionalizable with fluorescent biopolymers N2 - We report on the synthesis of ultra-small silver nanoparticles and their quantitative characterization by small-angle X-ray scattering. The size distribution was derived by utilizing a Monte-Carlo data evaluation procedure reported by Pauw et al. Mean volume-weighted sizes are 3 nm with a size distribution width of 18 %. The particles should be used as reference materials for comparison of the result of different analytical methods among which are field-flow fractionation (FFF), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA) and electron microscopy (EM). In addition further use of the particles is foreseen for comparison of studies on the toxicology of nanoparticles. Therefore the silver nanoparticles are transfunctionalized with fluorescent marked albumin (BSA-FITC) and also thoroughly characterized. With this it is possible to track silver nanoparticles and their behavior in interaction with cells. T2 - Polydays 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - SAXS KW - Biological application KW - Ligand exchange KW - Toxicity PY - 2016 AN - OPUS4-37651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sieg, H. A1 - Lehmann, C. A1 - Kästner, Claudia A1 - Krause, B. A1 - Lichtenstein, D. A1 - Böhmert, L. A1 - Burel, A. A1 - Chevance, S. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Gauffre, F. A1 - Estrela-Lopis, I. A1 - Fessard, V. A1 - Luch, A. A1 - Lampen, A. T1 - Cellular effects of Al-, Ti- and Zn-containing nanomaterials on intestinal cell lines in vitro N2 - Aluminium-, titanium- and zinc-containing chemicals are highly abundant in food, food contact materials and consumer products. Physical and chemical conversion might lead to a certain amount of nanoscaled particles that can be taken up by the gastrointestinal tract. Nanospecific effects such as higher reactivity, increased surface or altered uptake can increase hazardous potential for human health. The aim of this study as part of the european SolNanoTOX project is to characterize toxicological effects of Al-, Zn- and Ti-containing nanomaterials on intestinal cell lines. While toxicological potential of zinc species has been well studied, little is known about the effects of aluminium- and titanium-species. We have performed toxicological experiments on the human intestinal cell line Caco-2 for numerous endpoints: Cellular ATP and glutathione levels, apoptosis, necrosis, vesicular uptake, oxidative stress, growth rate and cell cycle modification. While zinc-containing controls showed toxic responses, our utilized aluminium- (elementary Al, γ-Al2O3) and titanium-species (TiO2, rutile) did not. Nevertheless, we detected some differences between both different aluminium nanoparticle species and aluminium ions with regard to cell viability. We also provide strong evidence for particle-specific uptake of aluminium and titanium in the intestinal cell line Caco-2. In summary, among the different tested endpoints, Al- and Ti-containing nanomaterials did not show any toxicity in intestinal cell lines in vitro. Nevertheless, this absence of effect was not due to an absence of exposure, since particle-specific uptake was reported. Metal particle uptake over a long time might therefore be relevant for risk assessment of aluminium- and titanium-containing food products. T2 - 8th International Nanotoxicology Congress CY - Boston, MA, USA DA - 01.06.2016 KW - Artificial digestion KW - SAXS KW - Cell viability KW - Toxicity PY - 2016 AN - OPUS4-36921 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -