TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Schartel, Bernhard T1 - The effects of property variation on the dripping behaviour of polymers during UL94 test simulated by particle finite element method JF - e-Polymers N2 - The dripping behaviour of polymers is often observed experimentally through the UL94 flammability standard test. In this work, polymeric dripping under fire is investigated numerically using particle finite element method. A parametric analysis was carried out to observe the influence of a single property on overall dripping behaviour via a UL94 vertical test model. Surrogates and property ranges were defined for variation of the following parameters: glass transition temperature (Tg), melting temperature (Tm), decomposition temperature (Td), density (ρ), specific heat capacity (Cp), apparent effective heat of combustion of the volatiles, char yield (μ), thermal conductivity (k), and viscosity (η). Polyamide, poly(ether ether ketone), poly(methyl methacrylate), and polysulfone were used as benchmarks. Simulated results showed that specific heat capacity, thermal conductivity, and char yield allied with viscosity were the properties that most influenced dripping behaviour (starting time and occurrence). KW - Dripping KW - PFEM KW - UL 94 KW - Simulation KW - Fire behaviour PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597449 DO - https://doi.org/10.1515/epoly-2023-0194 SN - 1618-7229 VL - 24 IS - 1 PB - De Gruyter AN - OPUS4-59744 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Marti, J. M. A1 - Schartel, Bernhard T1 - High Heat Resistance Can Be Deceiving: Dripping Behavior of Polyamide 4.6 in Fire JF - Macromolecular Mater and Engineering N2 - Polyamide 4.6 (PA46) is a high-heat-resistant polymer, but it has no dripping resistance under fire. Three commercial grades of PA46 are investigated under UL 94 vertical fire test conditions. Their performances are discussed based on the materials’ structural, thermal, and rheological properties. PA46 presents flaming drops, whereas dripping is prevented in the flame-retarded PA46. Friction-modified PA46 has increased flaming dripping. Temperature profiles of the specimens under fire and the temperature of the drops are measured by thermocouples. A UL 94 vertical test configuration consisting of two flame applications is designed to assess the quantitative dripping behavior of the set of materials by the particle finite element method (PFEM). Polymer properties (activation energy and Arrhenius coefficient of decomposition, char yield, density, effective heat of combustion, heat of decomposition, specific heat capacity, and thermal conductivity) in addition to rheological responses in high temperatures are estimated and measured as input parameters for the simulations. The dripping behavior obtained by simulated materials corresponds with the experimental results in terms of time and drop size. A consistent picture of the interplay of the different phenomena controlling dripping under fire appears to deliver a better understanding of the role of different materials’ properties KW - Dripping KW - UL 94 KW - PFEM KW - High heat resistance KW - Polyamide 4.6 KW - Flammability PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-586015 DO - https://doi.org/10.1002/mame.202300091 SN - 1439-2054 SN - 1438-7492 VL - 308 IS - 10 SP - 1 EP - 11 PB - Wiley-VCH AN - OPUS4-58601 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Turski Silva Diniz, Analice A1 - Huth, Christian A1 - Schartel, Bernhard T1 - Dripping and decomposition under fire: Melamine cyanurate vs. glass fibres in polyamide 6 JF - Polymer Degradation and Stability N2 - Manipulating the melt dripping of thermoplastics makes a fire scenario more or less dangerous. Yet, a detailed understanding of this phenomenon has remained a question mark in studies of the flammability of plastics. In this work, the individual and collective impacts of additives on the dripping behaviour of polyamide 6 (PA6) were studied. A set of materials compounded with melamine cyanurate (MCA) and glass fibre (GF) was investigated. Under UL 94 vertical test conditions, the dripping during first and second ignition was quantified and investigated in detail. The number, size and temperature of the drops were addressed, and the materials and their drops evaluated with respect to such aspects as their averaged molecular weight, thermal decomposition and rheological properties. PA6 with V-2 classification improved to V-0 with the addition of MCA, and achieved HB in the presence of GF. PA6/GF/MCA achieved V-2. Non-flaming drops of PA6/MCA consisted of oligomeric fragments. Flaming drops of PA6/GF showed a more pronounced decomposition of PA6 and an increased GF content. The dripping behaviour of PA6/GF/MCA can be understood as a combination of the influence of both additives. The results showed nicely that dripping under fire is neither a straightforward material property nor a simple additive influence, but the complex response of the material influenced by the interaction and competition of different phenomena. KW - Dripping KW - UL 94 KW - Polyamide 6 KW - Melamine cyanurate KW - Glass fibre KW - Flame retardant PY - 2020 DO - https://doi.org/10.1016/j.polymdegradstab.2019.109048 SN - 0141-3910 VL - 171 SP - 109048 PB - Elsevier Ltd. AN - OPUS4-50239 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -