TY - JOUR A1 - Gesell, Stephan A1 - Ganesh, R. A1 - Fedelich, Bernard A1 - Kuna, M. A1 - Kiefer, B. T1 - Numerical calculation of 𝛥CTOD to simulate fatigue crack growth under large scale viscoplastic deformations JF - Engineering Fracture Mechanics N2 - Crack propagation under low cycle fatigue and thermomechanical fatigue is characterized by high plastic and creep strains that extend over large regions around the crack, so that concepts of linear-elastic fracture mechanics cannot be applied. In these cases, the cyclic crack tip opening displacement 𝛥CTOD is a promising loading parameter to quantify crack growth. In this work, suitable definitions and Finite Element techniques are investigated and compared for an accurate calculation of 𝛥CTOD under cyclic mechanical and/or thermal loading. A viscoplastic temperature dependent material model of Chaboche-type is used along with large strain settings, specified for the austenitic cast iron Ni-resist. Extensive two-dimensional analyses of Single Edge Notch Tension specimens revealed that collapsed special crack tip elements are superior compared with commonly used regular quadrilateral 8-node elements. At the same level of accuracy of 𝛥CTOD, they require an about ten times coarser mesh and show less sensitivity w.r.t. element size for both stationary and propagating cracks. In order to simulate fatigue crack growth, an efficient, fully automated FE-technique is developed for an incremental crack propagation by successive remeshing, whereby the deformations and internal state variables are mapped from the old mesh onto the new one. Recommendations are made regarding important numerical control parameters like optimal size of crack tip elements, length of crack growth increment in relation to plastic zone size and 𝛥CTOD value. KW - Crack tip opening displacement KW - Finite element analysis KW - Crack growth KW - Low cycle fatigue PY - 2023 DO - https://doi.org/10.1016/j.engfracmech.2023.109064 VL - 281 IS - 109064 SP - 1 EP - 23 PB - Elsevier Ltd. AN - OPUS4-56857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jürgens, Maria A1 - Olbricht, Jürgen A1 - Fedelich, Bernard A1 - Skrotzki, Birgit T1 - Low Cycle Fatigue and Relaxation Performance of Ferritic–Martensitic Grade P92 Steel JF - Metals N2 - Due to their excellent creep resistance and good oxidation resistance, 9–12% Cr ferritic–martensitic stainless steels are widely used as high temperature construction materials in power plants. However, the mutual combination of different loadings (e.g., creep and fatigue), due to a “flexible” operation of power plants, may seriously reduce the lifetimes of the respective components. In the present study, low cycle fatigue (LCF) and relaxation fatigue (RF) tests performed on grade P92 helped to understand the behavior of ferritic–martensitic steels under a combined loading. The softening and lifetime behavior strongly depend on the temperature and total strain range. Especially at small strain amplitudes, the lifetime is seriously reduced when adding a hold time which indicates the importance of considering technically relevant small strains. KW - Ferritic–martensitic steel KW - P92 KW - Low cycle fatigue KW - Relaxation fatigue KW - Cyclic softening PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-473905 DO - https://doi.org/10.3390/met9010099 VL - 9 IS - 1 SP - 99, 1 EP - 25 PB - MDPI AN - OPUS4-47390 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Fedelich, Bernard A1 - Becker, M. ED - Beck, T. ED - Charkaluk, E. T1 - Constitutive modelling of viscoplastic deformation in single crystal nickel-basis superalloys subjected to cyclic and creep loadings at high-temperatures T2 - Eighth International Conference on Low Cycle Fatigue N2 - Gas turbines are widely used for a variety of purposes including power generation, compression or as jet engines in aircrafts. The critical components of a gas turbine are the high-pressure turbine blades which operate under severe conditions. These include thermo-mechanical loadings over temperatures ranging from room temperature up to 1100°C. While a large number of constitutive models for single crystals have been proposed, most applications are restricted to special loading scenarios, temperature range and deformation mechanisms. In particular, a number of models are focused on pure creep. Only a few papers consider application of both creep and fatigue. Applications of the constitutive models to long-term stress relaxation are even scarcer. The new model assumes deformation-induced softening and can properly reproduce the viscous behavior at different time scales. The model has been calibrated with the uniaxial tests at 800°C and 950°C in [001], [011] and [111] specimens of a nickel-basis superalloy. The predicted creep, short- and long-term relaxation and cyclic tests are in reasonable agreement with the experimental observations. T2 - Eighth International Conference on Low Cycle Fatigue (LCF8) CY - Dresden, Germany DA - 27.06.2017 KW - Constitutive law KW - Single crystal KW - Superalloy KW - Creep KW - Low cycle fatigue PY - 2017 SP - 371 EP - 376 PB - DVM e.V. CY - Berlin AN - OPUS4-40928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fedelich, Bernard A1 - Kindrachuk, Vitaliy A1 - Becker, M. T1 - Simulation of non-isothermal mechanical tests on a single crystal nickel-basis superalloy N2 - Gas turbines are widely used for a variety of purposes including power generation, compression or as jet engines in aircrafts. The critical components of a gas turbine are the high-pressure turbine blades which operate under severe conditions. These include thermo-mechanical loadings over temperatures ranging from room temperature up to 1100°C. While a large number of constitutive models for single crystals have been proposed, most applications are restricted to special loading scenarios, temperature range and deformation mechanisms. In particular, a number of models are focused on pure creep. Only a few papers consider application of both creep and fatigue. Applications of the constitutive models to long-term stress relaxation are even scarcer. The new model assumes deformation-induced softening and can properly reproduce the viscous behavior at different time scales. The model has been calibrated with the uniaxial tests at 800°C and 950°C in [001], [011] and [111] specimens of a nickel-basis superalloy. The predicted creep, short- and long-term relaxation and cyclic tests are in reasonable agreement with the experimental observations. T2 - Eigth International Conference on Low Cycle Fatigue CY - Dresden, Germany DA - 27.06.2017 KW - Constitutive law KW - Superalloy KW - Single crystal KW - Creep KW - Low cycle fatigue PY - 2017 AN - OPUS4-40923 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kiyak, Yusuf A1 - Fedelich, Bernard A1 - May, Thomas A1 - Pfennig, Anja T1 - Simulation of crack growth under low cycle fatigue at high temperature in a single crystal superalloy JF - Engineering fracture mechanics N2 - Crack growth tests have been performed at 950 °C with Single Edge Notch specimens of the Ni-based single crystal superalloy PWA1483. In particular, several orientations and frequencies have been investigated, thus allowing the assessment of the influence of these parameters on the crack growth rate. In addition, oxidation experiments have been carried out to characterize the kinetics of the outer oxide scale growth at the same temperature. On the other side, crack growth has been simulated with the Finite Element program ABAQUS in real test conditions by the node release technique. The nodes are released according to the measured crack growth rate. The simulation results are compared with the test results on the basis of the computed Crack Tip Opening Displacement (CTOD). For this purpose, the crack is propagated until a stabilized value of the CTOD is obtained. This is usually the case when the crack has crossed the initial plastic zone. The procedure provides an evaluation of the effects of cycle frequency, crystal orientation, plasticity and oxide induced crack closure. KW - Finite element analysis KW - Low cycle fatigue KW - Creep-fatigue KW - Crack growth KW - Nickel-based superalloys PY - 2008 DO - https://doi.org/10.1016/j.engfracmech.2007.08.002 SN - 0013-7944 SN - 1873-7315 VL - 75 IS - 8 SP - 2418 EP - 2443 PB - Elsevier Science CY - Kidlington AN - OPUS4-16690 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Fedelich, Bernard A1 - Kiyak, Yusuf A1 - May, Thomas A1 - Pfennig, Anja ED - Gdoutos, E. T1 - Simulation of crack growth under low cycle fatigue at high temperature in a single crystal superalloy T2 - Fracture of nano and engineering materials and structures T2 - 16th European Conference of Fracture "Fracture of Nano and Engineering Materials and Structures" CY - Alexandroupolis, Greece DA - 2006-07-03 KW - Simulation KW - Experiment KW - Crack growth KW - Low cycle fatigue KW - High temperature KW - Single crystal KW - Superalloy KW - Oxidation PY - 2006 SN - 1-402-04971-4 IS - 900_tra SP - 8 pages PB - Springer CY - Dordrecht AN - OPUS4-12556 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -