TY - CONF A1 - Herbst, Tristan A1 - Rübner, Katrin A1 - Meng, Birgit A1 - Hauer, B. T1 - Assessment concept for the sustainable use of secondary aggregates in concrete T2 - International conference on advances in construction materials through science and engineering (RILEM Proceedings) N2 - Nowadays there are several applications of mineral recycling materials and residues. At present an assessment method for the use of secondary raw materials, which considers sustainability aspects, does not exist. In the framework of the German DAfStb/BMBF research project 'Sustainable Building with Concrete' an assessment concept was developed. It includes the following four assessment steps: I. Basic considerations, II. Advantages for sustainable construction, III. Alternative paths for application, and IV. Sensitivity analysis. The concept was developed on the basis of recycled concrete aggregates, which are already used according to German standards. Afterwards, it was applied and verified by the evaluation of the utilisation of municipal solid waste incinerator bottom ashes. T2 - International RILEM conference on advances in construction materials through science and engineering CY - Hong Kong, China DA - 05.09.2011 KW - Sustainability KW - Assessment KW - Secondary aggregates KW - Concrete PY - 2011 SN - 978-2-35158-116-2 VL - PRO 79 IS - Chapter 10 / Study of sustainable use... SP - 1 EP - 8 PB - RILEM Publications AN - OPUS4-24564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Priebe, Nsesheye Susan A1 - Schmidt, W. T1 - Spearhead network for innovative, clean and safe cement and concrete technologies (SPIN) project in east, central and southern Africa T2 - 2nd Environmental cement Africa conference (Proceedings) T2 - 2nd Environmental cement Africa conference CY - Nairobi, Kenya DA - 2011-05-11 KW - SPIN KW - Africa KW - Cement KW - Concrete KW - Construction PY - 2011 N1 - Geburtsname von Priebe, Nsesheye Susan: Msinjili, N. S. - Birth name of Priebe, Nsesheye Susan: Msinjili, N. S. SP - 1 EP - 3(?) AN - OPUS4-25156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Urs A1 - Schlegel, Moritz-Caspar A1 - Emmerling, Franziska T1 - Advanced techniques for studying damage mechanisms of cementitious matrices affected by sulfate attack T2 - EMABM 2011 - 13th Euroseminar on microscopy applied to building materials (Proceedings) N2 - Cementitious materials, in particular concrete, are durable materials if prepared appropriately and the Service life of concrete structures is now often required to last 120 years or more. Concrete durability depends strongly on intrinsic (e.g. composition, porosity) and exterior factors (e.g. moisture condition and composition, frost cycles, load pattem). Deleterious actions leading to concrete degradation are often created by the environment. Extemal sulfate attack is one of the more spectacular damage scenarios for concrete structures caused by the ingress of sulfate ions into the pore System of the material and successive formation of expanding phases. Though in recent years well studied there are still many questions remaining conceming the mechanisms of sulfate attack. In particular over the last ten years, with the increased utilization of blended cements, new questions arose concerning the sulfate resistance of those binder Systems. In the presented study therefore a method was developed to analyze the changes of the phase composition within the micro structure due to sulfate attack. The analytical method was based on pX-Ray diffraction (pXRD) using Synchrotron radiation in Debye-Scherrer (transmission) geometry. The spatial resolution of the method is ca. 10 pm and allows the characterization of phase transformations in the wake of damaging processes in more detail compared to other techniques. Furthermore, the experimental setup provides the possibility for analyzing the phase assemblage of a given sample without destroying the micro structure. This is possible because the specimens for phase analysis consists of thick sections, which can be used for further microscopic analysis of the micro structure and micro chemistry (e.g. by SEM-EDX). Samples containing supplementary cementitious materials were measured in comparison and to reconstruct the influence of the degradation process in detail. Additionally, reaction ffonts within the samples were localized by micro x-ray fluorescence analysis (MXRF). T2 - EMABM 2011 - 13th Euroseminar on microscopy applied to building materials CY - Ljubljana, Slovenia DA - 14.06.2011 KW - Sulfate attack KW - Concrete KW - Synchrotron KW - XRD KW - Phase analysis PY - 2011 SN - 978-961-90366-7-9 SP - 1 EP - 9 AN - OPUS4-24878 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Chabrelie, A. A1 - Müller, Urs A1 - Scrivener, K.L. ED - Palomo, Á. ED - Zaragoza, A. ED - Agüí, J. C. L. T1 - Mechanisms of degradation of concrete by external sufate ions under laboratory and field conditions T2 - 13th International congress on the chemistry of cement - XIII ICCC (Proceedings) N2 - The durability of concrete is a major challenge for the construction, which devotes one third to one half of its annual investment to building maintenance. The lack of fieid data regarding concrete durability, especially in the case of exposure to Sulfate ions (“sulfate attack”) makes it dijficult to determine the appropriate fest methods andperformance criteria. Additionally, the increased use of sustainable blends (cement with mineral admixtures, typically slag from the iron industiy) suffers from a lack of experience regarding their long-term performance. Most results for sulfate resistance are derived from accelerated laboratoiy tests xvhere performance criteria are based only on macroscopic properties, especially expansion. To fill this gap and better widerstand the mechanisms of sulfate attack under real conditions, a parallel study of laboratoiy micro-concrete and fieid concrete samples under sulfate exposure was undertaken, focussing on microstructural changes in addition to the conventional macroscopic characterisation. Four exposure regimes were designed in the laboratoiy: full immersion (ponding), pH-control, semi-immersion and wet/diy cycles. Pure Portland blends and slag blends witli high level of slag replacement (70 wt.-%) were investigated. The exposure regime has been found to play a major role in the damage process. In ponding conditions, the damage process takes place in three stages characterised by a first period of induction, followed by surface damage thatfinally extends to the bulle of the material. Paradoxically, the w/c-ratio does not seem to have much impact on the ionic transport phenomena but might be more decisive in the microstructure mechanical strength against local stresses. The slag blends, considered as sulfate resistant in ponding exposure, revealed badperformances under wet/diy cycles. This beliaviour was attributed to poor proper physical resistance of the slag hydrates against diying. The fieid concretes selected for the comparison with the laboratoiy cases were partially buried in a sulfate-enriched soil in Argentina. A pure Portland blend and a slag blends with high level of slag replacement (80 wt.-%) were investigated. The submerged part of the samples could be compared to the laboratoiy ponding exposure, wliile the upper layer of the samples subjected to weathering could be compared to the laboratoiy wet/diy cycles exposure. The fieid obsen’ations tend to confirm the laboratoiy results and validate the fest settings. It has been underlined that a direct relationship between damage (e.g.; cracking/expansion) andphase assemblage was not evident. However, the study highlights that sulfate combination with the hydrates of the cement (e.g.; C-S-H) and with those of the slag would play a rote in the initiation of the expansion, which would be attributed to a swelling of the hydrates or to the precipitation offine ettringite after the Saturation level in sulfate of the hydrates has been reached. T2 - 13th International congress on the chemistry of cement - XIII ICCC CY - Madrid, Spain DA - 03.07.2011 KW - Sulfate attack KW - Exposure conditions KW - Concrete KW - Laboratory test KW - Field KW - Phase assemblage KW - Microstructure KW - XRD KW - SEM KW - SCM KW - Slag PY - 2011 SN - 978-84-7292-400-0 SP - 1 EP - 14 CY - Madrid AN - OPUS4-24810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Urs A1 - Malaga, Katarina T1 - Study on the application of anti-graffiti systems on natural stones and concrete T2 - Hydrophobe VI - 6th International conference on water repellent treatment of building materials N2 - The goal of this study was to find a correlation between cleaning efficacy of substrates protected with anti-graffiti systems (AGS) and their porosity, surface roughness, and composition as well as usability of the Technical Testing Guideline for Anti-Graffiti Systems (TP-AGS, issued by BASt) for natural stone and brick/clinker masonry. The results showed that the cleaning efficacy mainly depends on the porosity of the substrate and the type of AGS. Also, higher surface roughness contributed to a lower cleaning efficacy. The results showed also that concrete panels and cement joints in masonry represented the worst case. The color change of all substrate materials compared to concrete was mostly within acceptable limits. Gloss changes were significant for a number of substrates. In particular, several of the wax-treated low-porosity substrates exceeded the threshold value of 10. The limit of water vapor permeability of the AGS prescribed in the TP-AGS might be too high for natural stone substrates. In general, the TP-AGS is useful for the determination of the efficiency factor of anti-graffiti agents on various substrates. T2 - Hydrophobe VI - 6th International conference on water repellent treatment of building materials CY - Rome, Italy DA - 12.05.2011 KW - Anti-graffiti KW - Permanent KW - Sacrificial KW - Stones KW - Concrete KW - Cleaning efficiency PY - 2011 SN - 978-3-931681-99-9 SP - 167 EP - 180 PB - Aedificatio Publishers AN - OPUS4-23719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Wolfram T1 - Challenges of the African environmental conditions for concrete mixture composition T2 - Workshop cement and concrete for Africa (Proceedings) N2 - Concrete technology was exposed to a rapid development during the last three decades. For the longest time in its history, concrete was considered as a three component System consisting of aggregates, which are bound by the hardened cement paste consisting of hydrated cement. Traditionally, the only way of adjusting the consistency of concrete was using well adjusted aggregates and grading curves and adding excess water to the concrete, accepting that the latter in return reduces strength and durability. During the last three decades, however, concrete has developed further from a three component System towards an (at least) five component system, since the use of mineral additions and Chemical admixtures has become state of the art. Both components are able to enhance the workability, the compactability, and the density of the microstructure with effects on strength, ductility and durability, while cement can be saved in parallel. Due to reasonable use of admixtures and additions, concrete can be designed to match mechanically high performance specifications. Traditionally, cement paste was considered the weakest component in concrete. Flowever, in modern concrete a good paste composition can yield highest performance, passing the role of the mechanical bottleneck towards the aggregates. T2 - Workshop cement and concrete for Africa CY - Berlin, Germany DA - 17.08.2011 KW - Cement KW - Concrete KW - Mixture composition KW - Africa KW - Climatic conditions PY - 2011 SN - 978-3-9814281-4-8 SP - 37 EP - 49 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-24780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -