TY - CONF A1 - Skłodowska, Anna Maria A1 - Lay, Vera A1 - Baensch, Franziska A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten T1 - Acoustic emission monitoring for engineered barriers in nuclear waste disposal N2 - To safely dispose of nuclear waste in underground facilities, engineered barrier systems are needed to seal shafts and galleries. The material used in these barriers must be adapted to the host rock parameters. Shrinking and cracking must be avoided to provide a barrier with almost zero permeability. For repositories in salt rock environments, several types of salt concrete (SC) are possible construction materials. Within the project SealWasteSafe, we compared the behavior of an innovative alkali-activated material (AAM) with standard SC in their hydration and hardening phase. To monitor the microstructural changes within the two materials SC and AAM, acoustic emission (AE) signals have been recorded for up to ~250 days on 340-liter-cubic specimens. The phenomenon of AE is defined as the emission of elastic waves in materials due to the release of localized internal energy. Such energy release can be caused by the nucleation of micro-fracture, e.g., in concrete while curing or when exposed to load. The occurrence of AE events gives first rough indications of microstructural changes and potentially occurring cracking and thus, provides insights for structural health monitoring (SHM). The results show, that for the first 28 days after casting, less AE activity was detected in the AAM compared to SC. After 61 days, in the AAM material, the number of AE events exceeded those observed in the SC. However, the majority of the AE detected and located in AAM was related to surface effects, and not to microstructural changes or occurring cracks within the bulk volume. Additionally, the source location analysis indicated, that despite lower activity in SC, we observed some clustering of the events. In contrast, in AAM, the activity inside the specimen is randomly distributed over the whole volume. The monitoring results help to estimate the material’s sealing properties which are crucial to assess their applicability as sealing material for engineered barriers. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 10.06.2024 KW - Acoustic emission monitoring KW - Nuclear waste repositories KW - Event localization KW - SealWasteSafe project PY - 2024 AN - OPUS4-60552 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Skłodowska, Anna Maria A1 - Lay, Vera A1 - Baensch, Franziska A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Carsten T1 - Microseismicity monitoring in materials for nuclear waste storage repositories N2 - One of the major tasks in nuclear waste management is to design safe and reliable sealing structures for radioactive waste repositories. Particularly for salt as a host rock, engineered barrier systems for underground waste disposal must be constructed of well-understood (cementitious) materials that will sustain environmental conditions and ensure high durability. Within the SealWasteSafe project, we studied two materials with a potential for sealing structures for nuclear waste repositories: an innovative alkali-activated material (AAM) and standard salt concrete (SC). To analyze the development of microstructural changes within the materials, we monitored microseismicity (aka acoustic emission monitoring) occurring during the hardening and setting period in two 340-liter-cubic specimens for up to ~250 days. The monitoring results showed, that in the first 61 days, fewer events occurred in AAM compared to SC. After this time the number of events in AAM sharply increased and significantly exceeded those observed in SC. However, the source localization analysis revealed that the increase of microseismicity in AAM material was not related to the formation of macro-cracks within the material but was mainly caused by the surface effects. Accompanying analysis of the test specimens with additional methods (such as e.g., X-ray CT) proved that no macro-cracks were observed inside the AAM specimen. Further analysis in the time and frequency domains helped to characterize the tested materials and to estimate their potential to be used for engineered barriers in nuclear waste repositories. Overall, our study shows the potential of microseismicity monitoring for feasibility studies and quality assurance in a broad range of applications, also in structural health monitoring. T2 - 84. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Jena, Germany DA - 10.03.2024 KW - Microseismicity KW - Nuclear waste repositories KW - Acoustic emission KW - SealWasteSafe project KW - Salt rock KW - Alkali-activated materia PY - 2024 AN - OPUS4-60549 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertola, N. A1 - Schumacher, T. A1 - Niederleithinger, Ernst A1 - Bruehwiler, E. T1 - Early detection of structural damage in UHPFRC structures through the combination of acoustic emission and ultrasonic stress wave monitoring N2 - Ultra-High-Performance Fiber-Reinforced Cementitious Composite (UHPFRC) offers several advantages compared to concrete, notably due to the strain hardening behavior under tensile actions. Structures made of this composite material are lightweight and highly durable, thanks to the UHPFRC waterproofing quality. Nonetheless, the tensile behavior leads to a different cracking pattern than conventional concrete and is not fully understood yet. This paper presents a combined approach using both passive ultrasonic (US) stress wave (or acoustic emission) and active US stress wave monitoring to localize and quantify damage progression in a full-scale UHPFRC beam during experimental load testing. The proposed monitoring approach involves 24 US transducers that are embedded randomly throughout a 4.2- meter-long laboratory UHPFRC T-beam. Continuous monitoring enabled accurate localization of US stress sources caused by loading-induced cracking as well as from pulses generated by the embedded US transducers. This study shows that it is possible to predict the location and shape of the macro-crack that is linked to structural failure early on, i.e., just after the end of the elastic domain. This combined approach opens new possibilities to monitor the structural behavior and detect damage on UHPFRC structures before they affect the structural behavior in terms of deflection and strain. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 11.6.2024 KW - UHPFRC KW - Acoustic emission KW - Damage detection PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604708 UR - https://www.ndt.net/article/ewshm2024/papers/477_manuscript.pdf DO - https://doi.org/10.58286/29698 SN - 1435-4934 SP - 1 EP - 8 PB - NDT.net AN - OPUS4-60470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sklodowska, Anna A1 - Baensch, Franziska A1 - Lay, Vera A1 - Niederleithinger, Ernst A1 - Kühne, Hans-Casten T1 - Acoustic emission monitoring for engineered barriers in nuclear waste disposal N2 - To safely dispose of nuclear waste in underground facilities, engineered barrier systems are needed to seal shafts and galleries. The material used in these barriers must be adapted to the host rock parameters. Shrinking and cracking must be avoided to provide a barrier with almost zero permeability. For repositories in salt rock environments, several types of salt concrete (SC) are possible construction materials. Within the project SealWasteSafe, we compared the behavior of an innovative alkali-activated material (AAM) with standard SC in their hydration and hardening phase. To monitor the microstructural changes within the two materials SC and AAM, acoustic emission (AE) signals have been recorded for up to ~250 days on 340-litercubic specimens. The phenomenon of AE is defined as the emission of elastic waves in materials due to the release of localized internal energy. Such energy release can be caused by the nucleation of micro-fracture, e.g., in concrete while curing or when exposed to load. The occurrence of AE events gives first rough indications of microstructural changes and potentially occurring cracking and thus, provides insights for structural health monitoring (SHM). The results show, that for the first 28 days after casting, less AE activity was detected in the AAM compared to SC. After 61 days, in the AAM material, the number of AE events exceeded those observed in the SC. However, the majority of the AE detected and located in AAM was related to surface effects, and not to microstructural changes or occurring cracks within the bulk volume. Additionally, the source location analysis indicated, that despite lower activity in SC, we observed some clustering of the events. In contrast, in AAM, the activity inside the specimen is randomly distributed over the whole volume. The monitoring results help to estimate the material’s sealing properties which are crucial to assess their applicability as sealing material for engineered barriers. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 11.06.2024 KW - Endlager KW - Barriere KW - AAM KW - Akustische Emission PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604699 UR - https://www.ndt.net/article/ewshm2024/papers/768_manuscript.pdf DO - https://doi.org/10.58286/29834 SN - 1435-4934 SP - 1 EP - 7 PB - NDT.net AN - OPUS4-60469 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, T. A1 - Bertola, N. A1 - Epple, Niklas A1 - Bruehwiler, E. A1 - Niederleithinger, Ernst T1 - Combined Passive and Active Ultrasonic Stress Wave Monitoring of Concrete Structures: An Overview of Data Analysis Techniques and Their Applications and Limitations N2 - Combined passive ultrasonic (US) stress wave [better known as acoustic emission (AE)] and active US stress wave monitoring has been shown to provide a more holistic picture of ongoing fracture processes, damage progression, as well as slowly occurring aging and degradation mechanisms in concrete structures. Traditionally, different data analysis techniques have been used to analyze the data generated from these two monitoring techniques. For passive US stress wave monitoring, waveform amplitudes, hit rates, source localization, and b-value analysis, among others, have been used to detect and locate cracking. On the other hand, amplitude tracking, magnitude squared coherence (MSC), and coda wave interferometry (CWI) are examples of analyses that have been employed for active US stress wave monitoring. In this paper, we explore some of these data analysis techniques and show where their respective applications and limitations might be. After providing an overview of the monitoring approach and the different data analysis techniques, results and observations from selected laboratory experiments are discussed. Finally, suggestions for further work are proposed. T2 - 11th European Workshop on Structural Health Monitoring (EWSHM 2024) CY - Potsdam, Germany DA - 11.06.2024 KW - Ultrasound KW - Acoustic emission KW - Concrete KW - Stress PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-604687 UR - https://www.ndt.net/article/ewshm2024/papers/824_manuscript.pdf DO - https://doi.org/10.58286/29863 SN - 1435-4934 SP - 1 EP - 8 PB - NDT.net AN - OPUS4-60468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Accuracy, Uncertainty, Probability of Detection N2 - This talk presents the concepts of measurement accuracy, uncertainty (in contrast to error analysis) an probability of detection for non-destructive testing. The relevant guidelines (GUM, Mil.Std.) are intrduced and practical examples given. T2 - USES2 Training Week 2 CY - Berlin, Germany DA - 24.06.2024 KW - Uncertainty KW - Pod KW - Measurements PY - 2024 AN - OPUS4-60467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Maack, Stefan A1 - Buske, Stefan T1 - Correction: Application of iterative elastic SH reverse time migration to synthetic ultrasonic echo data N2 - This is a corrigendum to the original article "Application of iterative elastic SH reverse time migration to synthetic ultrasonic echo data" that was published in the "Journal of nondestructive evaluation" (2014, DOI: 10.1007/s10921-023-01010-3). PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-599597 DO - https://doi.org/10.1007/s10921-024-01052-1 SN - 1573-4862 VL - 43 IS - 1 SP - 1 EP - 3 PB - Springer Science and Business Media CY - Dordrecht AN - OPUS4-59959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Zerstörungsfreie Prüfung von Betonkonstruktionen N2 - Der Vortrag behandelt den Stand der Technik bei der zerstörungsfreien Prüfung von Betonkonstruktionen und insbesondere den Stand und die Herausforderungen bei der Digitalisierung. Es werden Prüfaufgaben sowie etablierte Prüfmethoden und die passende Auswahl diskutiert. Ein weitere Schwerpunkt liegt bei der Genauigkeit und Verlässlichkeit und dem Konzept ZfPStatik. Abschließend werden Schnittstellen zu BIM, SIB-Bauwerke und anderen System kurz angerissen und ein Katalog offener Fragen aufgestellt. T2 - Workshop Digitale Bauwerkserhaltung inklusive Bauwerksdiagnose CY - Bonn, Germany DA - 20.02.2024 KW - ZfP-Bau KW - Beton KW - Bauwerksprüfung KW - Digitalisierung KW - ZfPStatik PY - 2024 AN - OPUS4-59547 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - X-rays without X-rays: Can muon tomography provide pictures from within concrete objects? N2 - Until the 1980s radiography was used to inspect civil structures in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Meanwhile, non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features when applied to reinforced or prestressed concrete inspection. Muon tomography has received much attention recently. Muons are particles generated naturally by cosmic rays in the upper atmosphere and pose no risk to humans. Novel detectors and tomographic imaging algorithms have opened new fields of application, mainly in the nuclear sector, but also in spectacular cases such as the Egyptian pyramids. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results have been at least of similar quality compared to ultrasonic and radar imaging, potentially even better. Recently, the research was expanded to more realistic testing problems such as the detection of voids in certain structural elements. However, before practical implementation, more robust, mobile, and affordable detectors would be required as well as user-Friendly imaging and simulation software. T2 - ISNT NDE 2023 CY - Pune, India DA - 07.12.2023 KW - Muon tomography KW - Concrete KW - Civil engineering PY - 2023 AN - OPUS4-59347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Epple, Niklas T1 - ridge Monitoring by Ultrasonic Coda Wave Interferometry N2 - The built infrastructure ages and requires regular inspection and, when in doubt, monitoring. To ensure that older concrete bridges showing signs of deterioration can be used safely, several innovative monitoring tools have been introduced, including but not limited to optical, fiber-optic, or acoustic emission techniques. However, there are gaps in the portfolio. A sensing technique that covers a wide range of damage scenarios and larger volumes, while still being sensitive and specific, would be beneficial. For about 15 years, research has been conducted on ultrasonic monitoring of concrete structures that goes beyond the traditional ultrasonic pulse velocity test (PV test), mostly using a very sensitive data evaluation technique called coda wave interferometry. At BAM we have developed sensors and instrumentation specifically for this method. We have instrumented a 70-year-old, severely damaged prestressed concrete bridge in Germany in addition to a commercial monitoring system. We have now collected data for almost 3 years. We can show that we can provide information about the stress distribution in the bridge. We have also been able to confirm that there has been no significant additional damage to the bridge since the installation. T2 - ISNT NDE 2023 CY - Pune, India DA - 07.12.2023 KW - Coda wave interferometry KW - Structural health monitoring KW - Ultrasound KW - Concrete KW - Bridges PY - 2023 AN - OPUS4-59346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - X-rays without X-rays: Can muon tomography provide pictures from within concrete and other objects? N2 - Until the 1980s radiography was used to inspect civil structures in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Meanwhile, non-destructive techniques such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features when applied to reinforced or prestressed concrete inspection. Muon tomography has received much attention recently. Muons are particles generated naturally by cosmic rays in the upper atmosphere and pose no risk to humans. Novel detectors and tomographic imaging algorithms have opened new fields of application, mainly in the nuclear sector, but also in spectacular cases such as the Egyptian pyramids. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results have been at least of similar quality compared to ultrasonic and radar imaging, potentially even better. Recently, the research was expanded to more realistic testing problems such as the detection of voids in certain structural elements. However, before practical implementation, more robust, mobile, and affordable detectors would be required as well as user-Friendly imaging and simulation software. The talk also discusses other applications , such as volcanology, mining and geothermal exploration. T2 - RWTH Aachen, Geophysikalisches Seminar CY - Aachen, Germany DA - 11.01.2024 KW - Muon tomography KW - Civil engineering KW - Mining KW - Geothermal engineering PY - 2024 AN - OPUS4-59349 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Niederleithinger, Ernst T1 - Low frequency ultrasonic dataset for comparison and validation of signal processing and imaging techniques in civil engineering N2 - The evaluation of technical components and materials in terms of condition and quality with the aid of non-destructive testing methods plays an outstanding role both in industrial serial production and in the individual assessment of components. The ultrasonic echo method is used for a wide variety of testing tasks, such as measuring the thickness of a component. At the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin, test methods are developed and their performance is demonstrated. For this purpose, references such as materials, test procedures or data sets are generated, which are used to evaluate these developed test methods. An important component of these references are data sets that are created according to the BAM Data Policy and made available to the scientific community and users of test methods in practice on the basis of the FAIR principles (Findability, Accessibility, Interoperability, and Reuse). T2 - The International Symposium on Nondestructive Testing in Civil Engineering (NDT-CE) 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Reference data KW - Non destructive testing and evaluation KW - Ultrasonic KW - Civil engineering PY - 2022 AN - OPUS4-58440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Niederleithinger, Ernst T1 - Imaging of Ultrasonic Echo Measurements for Reconstruction of Technical Data of Bridges – Possibilities, Limitations and Outlook N2 - When reassessing existing concrete bridges, the challenge is often to obtain missing or incomplete information on the internal structure. In particular, the number and position of the existing reinforcement as well as the geometric dimensions of the components are of interest. Non-destructive testing methods, like radar or ultrasound, which work on the basis of the pulse-echo method, have been established for this purpose, as they only require access to the component from one side. The measurement data recorded on the structure require pre-processing to be able to reproduce the internal structure geometrically accurately. Besides different steps of data processing, the geometrical reconstruction of the measured data based on the Synthetic Aperture Focusing Technique (SAFT) is state of the art today. In this paper, the technical possibilities of the ultrasonic echo method are presented based on measurements in the laboratory and on a real bridge structure. The precision of the reconstruction and its limitations are shown. In addition to the state of the art SAFT technique, open questions and the latest research approaches, such as imaging by reverse time migration (RTM) including initial results are discussed. T2 - 13th German-Japanese Bridge Symposium CY - Osaka, Japan DA - 29.08.2023 KW - Bridge KW - Non destructive testing and evaluation KW - Concrete KW - Validation PY - 2023 AN - OPUS4-58328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Hofmann, M. A1 - Kudla, W. T1 - Correction: Lay et al. Ultrasonic quality assurance at magnesia shotcrete sealing structures. Sensors 2022, 22, 8717 N2 - The authors wish to correct the following errors in the original paper Lay, V.; Effner, U.; Niederleithinger, E.; Arendt, J.; Hofmann, M.; Kudla, W. Ultrasonic Quality Assurance at Magnesia Shotcrete Sealing Structures. Sensors 2022, 22, 8717, https://doi.org/10.3390/s22228717. PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-584969 DO - https://doi.org/10.3390/s23187966 SN - 1424-8220 VL - 23 IS - 18 SP - 1 EP - 3 PB - MDPI CY - Basel AN - OPUS4-58496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Niederleithinger, Ernst T1 - Imaging of Ultrasonic Echo Measurements for Reconstruction of Technical Data of Bridges – Possibilities, Limitations and Outlook N2 - When reassessing existing concrete bridges, the challenge is often to obtain missing or incomplete information on the internal structure. In particular, the number and position of the existing reinforcement as well as the geometric dimensions of the components are of interest. Non-destructive testing methods, like radar or ultrasound, which work on the basis of the pulse-echo method, have been established for this purpose, as they only require access to the component from one side. The measurement data recorded on the structure require pre-processing to be able to reproduce the internal structure geometrically accurately. Besides different steps of data processing, the geometrical reconstruction of the measured data based on the Synthetic Aperture Focusing Technique (SAFT) is state of the art today. In this paper, the technical possibilities of the ultrasonic echo method are presented based on measurements in the laboratory and on a real bridge structure. The precision of the reconstruction and its limitations are shown. In addition to the state of the art SAFT technique, open questions and the latest research approaches, such as imaging by reverse time migration (RTM) including initial results are discussed. T2 - 13th German-Japanese Bridge Symposium CY - Osaka, Japan DA - 29.08.2023 KW - Bridge KW - Non destructive testing and evaluation KW - Concrete KW - Validation PY - 2023 SP - 1 EP - 8 AN - OPUS4-58327 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Mielentz, Frank A1 - Prabhakara, Prathik A1 - Baensch, Franziska A1 - Johann, Sergej A1 - Hofmann, Detlef A1 - Sturm, Patrick A1 - Stamm, Michael A1 - Niederleithinger, Ernst T1 - Multi-sensory monitoring and ultrasound for quality assurance at underground sealing structures N2 - Within the safety concepts of underground disposal sites of nuclear waste, engineered barriers play an important role. As these sealing structures have high demands concerning integrity, we aim at advancing the available construction materials, monitoring, and inspection techniques within the project SealWasteSafe. A specifically developed alkali-activated material is compared to classical salt concrete. A comprehensive multi-sensory monitoring scheme is used at 150-340 l specimens to monitor setting and hardening of both materials. All sensors are demonstrated to resist the highly alkaline environments. Besides cabled and wireless temperature and humidity of the materials, strain variations using fibre optic sensors and acoustic emissions are recorded over periods of at least 28 days, partly for more than eight months. After hardening of the specimens, further nondestructive evaluations using ultrasonic echo and thermographic measurements are conducted. Preliminary results proof the suitability of the tested sensors and clearly highlight differences between the tested materials. Particularly, the newly developed alkali-activated material shows lower acoustic emission activity indicating less cracking activity. Additionally, unique ultrasonic methods will enable better images of potential internal objects and cracks at in-situ sealing structures. A largescale ultrasonic system is optimised to reliably detect objects at a depth exceeding 9 m while still obtaining a good resolution. Modelling studies show the potential of further increasing the distance between individual transducer arrays. Additionally, a new ultrasonic borehole probe using phased arrays allowing for beam focussing is constructed and tested. Laboratory measurements at a halfcylindrical concrete specimen coincide well with the previous modelling. In total, the presented safe materials, detailed monitoring approaches and ultrasonic quality assurance methods will help to obtain safe sealing structures within salt as a host rock. The concepts can partly be transferred to sealing structures in alternative host rocks and will also be valuable for non-nuclear waste repositories. T2 - NDE NucCon CY - Espoo, Finland DA - 25.01.2023 KW - SealWasteSafe KW - Engineered barriers KW - Monitoring KW - Embedded sensors KW - Ultrasonic imaging PY - 2023 SP - 2 EP - 10 AN - OPUS4-56928 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Nuclear concrete, and how to live with it more easy using NDE N2 - This keynote presentation compiles the specialities of civil engineering compared to other disciplines, of NDT in civil engineering compared to other filds of NDT and the specific challenges of applications in the nuclear energy and disposal sector. T2 - NucCon 2023 CY - Espoo, Finland DA - 25.01.2023 KW - NDT KW - Concrete KW - Nuclear PY - 2023 AN - OPUS4-56912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Introduction to BAM and ultrasonics (and GPR) in civil engineering N2 - This presentation gives anoverview about BAM, its department 8 and in particular its division 8.2 "NDT methods for civil engineering". The focus is on methods and applications with a geoscientific context, such as methods adopted from geophysics or NDT method applied in a geological environment. T2 - GTK (Geological Survey of Finland) Semninar CY - Espoo, Finland DA - 20.01.2023 KW - NDT KW - Ultrasound KW - Radar KW - Geophysics KW - Concrete PY - 2023 AN - OPUS4-56911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Stolpe, Heiko A1 - Behrens, Matthias A1 - Lay, Vera A1 - Niederleithinger, Ernst T1 - Ultrasonic Investigation for the Quality Assurance of Sealing Structures in Radioactive Waste Repositories N2 - The structural integrity of sealing structures in underground repositories for radioactive waste is a major concern regarding safe disposal. Non-destructive testing plays a very important role in the safety of this sealing structures. Ultrasonic pulse echo technology has been established in the construction industry as a non-destructive testing method for locating potential defects and material characterization of concrete structures. A borehole probe is an ultrasonic pulse-echo device used to investigate the internal structures of salt concrete. A prototype borehole probe is successfully demonstrated with the existing research borehole in the test site using a commercially available flaw detector. A novel phased array borehole probe that allows the beam to be focused based on the delay law was constructed and tested. The directivity measurements on the semi-cylindrical concrete sample agree well with the simulation results for the different focusing angles. In combination with geophysical reconstruction methods, the optimized radiation pattern of the probe is expected to improve the signal quality and thus increase the reliability of the imaging results. In addition, a unique large aperture ultrasound system (LAUS) is expected to provide enhanced images of possible cracks and embedded objects in in-situ structures. LAUS will be optimized to reliably detect objects at depths greater than 9 m and, at the same time, provide good resolution. Modeling studies show the potential to increase the distance between the transducer arrays further, and the same configuration has been successfully tested on a thick concrete wall. Overall, the paper shows that quality assurance using ultrasonic testing is crucial for constructing safe sealing structures to dispose of radioactive or toxic waste. T2 - NDE 2022 CY - Gandhinagar, India DA - 24.12.2022 KW - Ultrasonic Testing KW - Engineered barrier KW - Phased array technique KW - Non-destructive testing civil engineering KW - Quality assurance PY - 2022 AN - OPUS4-56802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Prabhakara, Prathik A1 - Mielentz, Frank A1 - Stolpe, Heiko A1 - Behrens, Matthias A1 - Lay, Vera A1 - Niederleithinger, Ernst T1 - Construction and validation of a novel phased array borehole probe for ultrasonic investigations at sealing structures in radioactive repositories N2 - A new type of ultrasonic borehole probe is currently under development for the quality assurance of sealing structures in radioactive waste repositories using existing research boreholes. The goal is to examine the sealing structures made of salt concrete for possible cracks, delamination, and embedded objects. Earlier prototype probes use 12 or 16 individual dry point contact (DPC) horizontal shear wave transducers grouped into a transmitter and a receiver array, each made up of six or eight individual transducers. They are operated with a commercially available portable ultrasonic flaw detector used in the civil engineering industry. To increase the generated sound pressure of the borehole probe, the number of transducers in the novel probe is increased to 32. In addition, timed excitation of each probe is used to direct a focused sound beam to a specific angle and distance based on calculated time delays. Hence, the sensitive test volume is limited, and the signal-to-noise ratio of the received signals is improved. This paper presents the validation of the newly developed phased array borehole probe by beam computation in CIVA software and experimental investigations on a semi-cylindrical test specimen to investigate the directional characteristics. In combination with geophysical reconstruction techniques, an optimised radiation pattern of the probe is expected to improve the signal quality and thus increase the reliability of the imaging results. This is of great importance for the construction of safe sealing structures needed for the disposal of radioactive or toxic waste. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Borehole probe KW - Phased array technique KW - SealWasteSafe KW - Monitoring KW - Engineered barrier; PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-568016 SN - 1435-4934 SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Epple, Niklas A1 - Niederleithinger, Ernst A1 - Fontoura Barroso, Daniel T1 - Coda Wave Interferometry for Monitoring Bridges with Embedded Ultrasonic Transducers – Lessons Learned at the Gänstorbrücke Bridge Ulm, Germany N2 - Ultrasonic Coda Wave interferometry has the potential to detect minute changes in scattering materials like concrete. By permanently installing ultrasonic transducers in concrete, DFG Research unit CoDA aims to develop methods for concrete damage assessment in Germany's aging infrastructure. To test the methods developed in simulations and laboratory experiments on a large scale, we have implemented several ultrasonic transducers at the Gänstorbrücke Ulm, one of Germany's most monitored road bridges. Since fall 2020 we are monitoring parts of the center of the Bridge, as well as an abutment, and compare the results to the commercial monitoring system. All data is recorded with a self-made data collection device, the so-called W-Box, and analyzed with different coda wave-based algorithms to detect signal and volumetric velocity changes. The long-term measurements show that the influence of temperature changes on strains and therefore ultrasound velocity changes calculated with coda waves can be monitored. The capabilities and limitations of the coda wave-based monitoring system are tested in a controlled experiment. Static loading using a truck with varying loads at several positions allows the calibration of the system to improve the detectability of possibly damaging loads and changes induced by this loading. A map of velocity change analyzing data from this load experiment shows that the influence of load on the material and strain distribution can be detected with array measurements. T2 - NDT-CE 2022 - The International Symposium on Nondestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Coda Wave Interferometry KW - Ultrasound KW - Embedded sensors KW - Bridge Monitoring KW - Load Experiment PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-564531 SP - 1 EP - 8 AN - OPUS4-56453 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Imani, A. A1 - Niederleithinger, Ernst A1 - Brown, M. C. T1 - Nondestructive Evaluation of Bridges without Structural Plans for Load Rating Purposes N2 - According to the NBI database, more than 21,000 in-service U.S. bridges lack sufficient structural documentation necessary for analytical load rating. Among these are a significant proportion of older prestressed concrete bridges. Given the lack of documentation on the reinforcing layout, such structures cannot be load rated analytically and are often subject to engineering judgement as the basis for rating. Otherwise, the typical approach for load rating such bridges is to conduct costly proof load testing and destructive probing together with making conservative assumptions. Therefore, any improvement to current practices will benefit DOTs and taxpayers alike. Accurately reconstructed 3D images of the girders to reflect the internal reinforcement could mitigate the need for costly, if not impractical, destructive testing and proof load testing, and help reduce dependency on conservative assumptions. This study examines a comprehensive NDE approach using ultrasonic tomography and GPR to aid in gathering structural information for load rating purposes. Different types of AASHTO and hollow core girders were tested. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Radar KW - Bridges KW - Load rating PY - 2022 AN - OPUS4-56356 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Landis, E. A1 - Hassefras, Emiel A1 - Oesch, Tyler A1 - Niederleithinger, Ernst T1 - A Microstructural Basis for Diffuse Ultrasound in Concrete N2 - Attenuation of ultrasonic signals in concrete has the potential to carry much information about the microstructure of the material. In this work a series of concrete specimens of varying porosities and pore size distributions were internally imaged with x-ray computed tomography (CT), and then subsequently examined with throughtransmission ultrasound. The CT images were used to quantify both capillary porosity of cement paste as well as internal interfaces that are likely to produce elastic wave scattering. Ultrasound signals were represented as a diffusion process such that absorption and scattering attenuation could be isolated. As implemented, the diffusion model was a poor predictor of capillary porosity, while diffusivity was a reasonable predictor of scattering interfaces. Diffusivity was found to scale extremely well with small scale porosity, which made it a good predictor of compressive strength. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - X-ray tomography KW - Ultrasound PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563371 UR - https://www.ndt.net/article/ndtce2022/paper/61592_manuscript.pdf SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, U. A1 - Pudovikov, S. A1 - Herrmann, H.-G. A1 - Wiggenhauser, H. A1 - Prabhakara, Prathik A1 - Niederleithinger, Ernst T1 - Evaluation of retroreflective corner echo for detection of surface breaking cracks in concrete by ultrasound N2 - The retroreflective corner echo is used, for example, in ultrasonic non-destructive testing of metals to find fatigue cracks in tubes or shafts. If the much weaker crack tip signal is additionally detected, the crack length can also be determined. A corner reflection occurs in cases of surface breaking cracks with predominantly perpendicular orientation to the surface. The intensity of the corner reflection depends on the angle of incidence and on the ultrasonic wave mode used. For the reliable detection of vertical surface breaking cracks in metals, transversal waves are commonly used, which propagate at an angle of 37° to 53° to the inspection surface. As shown in this contribution, the wide spread low frequency ultrasonic arrays with dry point contact sources available for ultrasonic testing of concrete also allow to receive corner echoes. These devices generate transversal waves in concrete structures with a large divergence of the sound field. A series of experiments was carried out with such dry point contact arrays on concrete specimens with artificial test defects and controlled induced cracks of different depths. The ultrasonic time-of-flight signals were recorded, exported and reconstructed utilising the SAFT (Synthetic Aperture Focusing Technique) algorithm. The SAFT reconstruction parameters were adjusted to visualize the corner echo indication. As will be shown, with this targeted processing, the reproducible detection of surface breaking cracks in concrete is possible. The retroreflective corner echo can thus be exploited in civil engineering for non-destructive inspection of concrete. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Concrete KW - Crack depth KW - Ultrasound KW - SAFT PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563365 UR - https://www.ndt.net/article/ndtce2022/paper/27256_manuscript.pdf IS - 27256 SP - 1 EP - 4 PB - NDT.net AN - OPUS4-56336 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Guangliang, Y. A1 - Mahon, D. A1 - Gardner, S. T1 - Muon tomography applied to assessment of concrete structures: First experiments and simulations. N2 - Non-destructive techniques for reinforced or prestressed concrete inspection such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features. Until the 1980s X-ray transmission was used in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Muon tomography has received much attention recently. Novel detectors for cosmic muons and tomographic imaging algorithms have opened new fields of application. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results are at least of similar quality compared to ultrasonic and radar imaging, potentially even better. In a second step, we have performed simulations to assess the potential for a set of important testing problems such as grouting defects in tendon ducts. The next steps include the development of mobile detectors and optimizing acquisition and imaging parameters. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Muon tomography KW - Concrete KW - Inspection KW - Simulation PY - 2022 AN - OPUS4-56323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - PREDIS The pre-disposal management of radioactive waste N2 - This presentation summarizes the opbjectives and the progress of the EURATOM project PREDIS (pre-disposal management of radioactive waste) and its workpackage 7 in particular. Focus is on the development of wireless sensors for monitoring radioactive waste packages, measuring radiation, temperature, pressure and humidity. T2 - DigiDecom 2022 CY - Halden, Norway DA - 18.10.2022 KW - Radioactive waste KW - Monitoring KW - Wireless KW - RFID PY - 2022 AN - OPUS4-56321 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Arndt, R.W. A1 - Grosse, C.U, A1 - Maehner, D. A1 - Niederleithinger, Ernst A1 - Taffe, A. A1 - Algernon, D. A1 - Berger, J. A1 - Kessler, S. A1 - Krueger, M. A1 - Kruschwitz, Sabine A1 - Ufermann-Wallmeier, D. A1 - Walther, A. T1 - Non-destructive testing in civil engineering: A memorandum for teaching at German-speaking universities N2 - This contribution summarizes actual developments and draft fundamental teaching topics in the field of nondestructive testing in civil engineering (NDT-CE). It is based on the first memorandum on teaching and research in the field of NDT-CE at German speaking universities and provides an overview of the academic education and highlights possible focuses, especially in teaching but also takes into account noteworthy developments and topics in research in the field of NDT-CE. Suggestions are given for the development and advancement of the teaching curricula in regards to a comprehensive and sound professional education of students in civil engineering and adjacent disciplines. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Curriculum KW - NDT-CE KW - University KW - Competencies PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563269 UR - https://www.ndt.net/article/ndtce2022/paper/61547_manuscript.pdf SP - 1 EP - 10 PB - NDT.net AN - OPUS4-56326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abraham, O. A1 - Niederleithinger, Ernst A1 - Schmidt, F. A1 - Sörensen, J.D. A1 - Thöns, S. A1 - Chapeleau, X. A1 - Ferria, H. T1 - Infrastar Training School on Fatigue and Reliability Analysis of Structures - Training for Assessment of Risk N2 - The Infrastar training school provides lectures and hands-on training to Master and PhD students, early-stage researchers and (young) professionals on all aspects of asset management of civil infrastructures with respect to fatigue of materials. It is organized yearly since 2019 and up to 20 profiles are selected to attend the 3.5-day training. A team of 7 teachers provides insight in multi-disciplinary and intersectoral basic concepts in three core fields, ranging from the design to the dismantling of the structures (bridges and wind turbines): 1. Monitoring and auscultation, 2. Structural and action models, 3. Reliability, risk and decision analyses. Each year, a recognized expert is invited to deliver a keynote lecture to raise interest in a specific aspect of one of the fields covered. The presentation is recorded and published on the training school website. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Doctoral School KW - Multidisciplinary KW - Fatigue KW - Reliability PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563253 UR - https://www.ndt.net/article/ndtce2022/paper/61021_manuscript.pdf SP - 1 EP - 3 PB - NDT.net AN - OPUS4-56325 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schumacher, T. A1 - Niederleithinger, Ernst T1 - Combining Passive and Active Ultrasonic Stress Wave Monitoring Techniques: Opportunities for Condition Evaluation of Concrete Structures N2 - Concrete structures are invaluable assets to a society and managing them efficiently and effectively can be supported by information gathered through structural health monitoring (SHM). In this paper, a combined approach based on passive, i.e., acoustic emission (AE), and active, i.e., ultrasonic stress wave (USW) monitoring techniques for application to concrete structures is proposed and evaluated. While AE and USW are based on the same underlying physics, i.e., wave motion in solids, they differ fundamentally with respect to the nature of the source. For the former, external stimuli such as mechanical loads or temperature cause the rapid release of energy from initially unknown locations. As a result, AE events are unique and cannot be repeated. For the latter, a known source at a known location is employed at a specified time. This approach is thus controlled and repeatable. It is argued that a combination of these two techniques has the potential to provide a more comprehensive picture of ongoing fracture processes, damage progression, as well as slowly occurring aging and degradation mechanisms. This combined approach does thus promise new opportunities to support condition assessment of concrete structures. After providing an overview and comparison of the two techniques, results, and observations from a full-scale laboratory experiment and an in-service bridge monitoring study are discussed to demonstrate the promise of the proposed combined monitoring approach. Finally, suggestions for further work are presented. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Acoustic emission KW - Concrete structures KW - Monitoring PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563242 UR - https://www.ndt.net/article/ndtce2022/paper/61607_manuscript.pdf SP - 1 EP - 11 PB - NDT.net AN - OPUS4-56324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Guangliang, Y. A1 - Mahon, D. A1 - Gardner, S. T1 - Muon tomography applied to assessment of concrete structures: First experiments and simulations. N2 - Non-destructive techniques for reinforced or prestressed concrete inspection such as ultrasound or radar have found regular, successful practical application but sometimes suffer from limited resolution and accuracy, imaging artefacts or restrictions in detecting certain features. Until the 1980s X-ray transmission was used in case of special demands and showed a much better resolution than other NDT techniques. However, due to safety concerns and cost issues, this method is almost never used anymore. Muon tomography has received much attention recently. Novel detectors for cosmic muons and tomographic imaging algorithms have opened new fields of application. As a first step towards practical application in civil engineering and as a proof of concept we used an existing system to image the interior of a reference reinforced 600 kg concrete block. Even with a yet not optimized setup for this kind of investigation, the muon imaging results are at least of similar quality compared to ultrasonic and radar imaging, potentially even better. In a second step, we have performed simulations to assess the potential for a set of important testing problems such as grouting defects in tendon ducts. The next steps include the development of mobile detectors and optimizing acquisition and imaging parameters. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Muon tomography KW - Concrete KW - Inspection KW - Simulation PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563224 UR - https://www.ndt.net/article/ndtce2022/paper/60943_manuscript.pdf SP - 1 EP - 8 PB - NDT.net AN - OPUS4-56322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Grohmann, Maria A1 - Niederleithinger, Ernst A1 - Buske, B. T1 - Application of Elastic Reverse Time Migration to Ultrasonic Echo Data in Civil Engineering N2 - To improve ultrasonic imaging of concrete structures, we transferred a seismic migration technique, the Reverse Time Migration (RTM), to non-destructive testing. A 2D elastic RTM algorithm was tested on synthetic ultrasonic echo data. Compared to the typically used synthetic aperture focusing technique (SAFT) as well as our acoustic RTM algorithm, the presented elastic RTM results show an enhancement in imaging vertical reflectors and complex features inside the 2D numerical concrete model. T2 - The International Symposium on Nondestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasonic Echo Technique KW - Reverse Time Migration KW - Synthetic Aperture Focusing Technique PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-561147 UR - https://www.ndt.net/article/ndtce2022/paper/60699_manuscript.pdf SP - 1 EP - 6 AN - OPUS4-56114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Maack, Stefan A1 - Küttenbaum, Stefan A1 - Niederleithinger, Ernst T1 - Practical procedure for the precise measurement of geometrical tendon positions in concrete with ultrasonic echo N2 - Existing concrete structures were usually designed for lifetimes of several decades. The current and urgently required efforts to increase sustainability and protect the environment will likely result in extended service lives up to 100 years. To achieve such objectives, it is required to assess structures over their entire lifecycles. Non-destructive testing (NDT) methods can reliably support the assessment of existing structures during the construction, operational, and decommissioning phases. One of the most important and safety-relevant components of a prestressed concrete structure are the tendons. NDT methods such as the ultrasonic echo method are suitable for both the detection and the localization of the tendons, i.e., the measurement of their geometrical position inside the component. The uniqueness of structures, concrete heterogeneity, and varying amounts of secondary components such as the reinforcement represent obstacles in the application of these methods in practice. The aim of this contribution is to demonstrate a practicable procedure, that can be used in the field to determine the parameters required for the measuring data analysis without extensive knowledge about the investigated components. For this purpose, a polyamide reference specimen is used to show which steps are required to obtain reliable imaging information on the position of tendons from the measurement data. The procedure is then demonstrated on a concrete test specimen that covers various relevant and practice-oriented test scenarios, such as varying tendon depths and component thicknesses. T2 - International Conference on Concrete Repair, Rehabilitation and Retrofitting (ICCRRR 2022) CY - Cape Town, South Africa DA - 03.10.2022 KW - Validation KW - Non-destructive testing KW - Ultrasonic KW - Reconstruction KW - Concrete KW - Tendon duct PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-559979 DO - https://doi.org/10.1051/matecconf/202236403007 SN - 2261-263X SP - 1 EP - 8 AN - OPUS4-55997 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Effner, Ute A1 - Niederleithinger, Ernst A1 - Arendt, J. A1 - Kudla, W. T1 - Ultrasonic quality assurance for underground salt shotcrete sealing structures in Teutschenthal mine, Germany N2 - Underground sealing structures are necessary to seal radioactive or toxic waste in underground repositories. A special version of MgO concrete is used in the mine in Teutschenthal and applied at a large-scale test with the aim to provide a low permeability barrier. The test structures (up to 10 m long) were created by shotcreting. Besides destructive tests, non-destructive ultrasonic measurements have been evaluated for quality assurance to monitor potential anomalies such as cracks, concrete inhomogeneities, and delamination. We show results of ultrasonic measurements with a multi-transducer system used at the front and from the side of the concrete structure. Images are obtained by synthetic aperture focusing techniques. The boundaries between concreting sections are not visible in the ultrasonic images systematically so that a successful concreting is assumed, which is confirmed by the low permeabilities observed. Several reflectors up to a depth of 1.2 m are identified and interpreted as potential damages in the concrete. Phase analysis of prominent reflectors reveal a negative impedance contrast thus indicating air filled voids, cracks or delamination. Boreholes through some of the identified reflectors are used to verify the results from ultrasonic measurements. Additionally, an experiment with incorporated artificial defects was undertaken to analyse the reliability of the applied methods. Overall, the conducted tests show the potential of ultrasonic measurements to detect critical anomalies. Despite challenges at small-scale structures (cm-order), large-scale anomalies can be identified. Consequently, implementing ultrasonic monitoring during and after the construction of concrete sealing structures has shown its potential as a tool for quality assurance, but needs further development and validation. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Ultrasound KW - Ultrasonic imaging KW - Magnesia shotcrete KW - Underground KW - Engineered barrier systems PY - 2022 UR - https://www.ndt.net/events/proceedings/topic.php?eventID=292&TopicID=27209 SP - 1 EP - 4 PB - NDT.net AN - OPUS4-55824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Lay, Vera A1 - Niederleithinger, Ernst A1 - Köpp, Christan T1 - Monitoring and digital tools for pre-disposal handling of cemented wastes N2 - Multifaceted developments for pre-disposal management of low and intermediate level radioactive waste are undertaken in the EC funded project PREDIS. In work package 7, innovations in cemented waste handling and pre-disposal storage are advanced by testing and evaluating. To provide better means for safe and effective monitoring of cemented waste packages including prediction tools to assess the future integrity development during pre-disposal activities, several monitoring and digital tools are evaluated and improved. Both safety enhancement (e. g. less exposure of testing personnel) and cost effectiveness are part of the intended impact. Current methods to pack, store, and monitor cemented wastes are identified, analysed and improved. Innovative integrity testing and monitoring techniques applied to evaluate and demonstrate package and storage quality assurance are further developed. The work includes but is not limited to inspection methods such as muon imaging, wireless sensors integrated into waste packages as well as external package and facility monitoring such as remote fiber optical sensors. The sensors applied will go beyond radiation monitoring and include proxy parameters important for long term integrity assessment (e. g. internal pressure). The measured data will be used in digital twins of the packages for specific simulations (geochemical, integrity) providing a prediction of future behaviour. Machine Learning techniques trained by the characterization of older packages will help to connect the models to the actual data. As data handling, processing and fusion are crucial for both the monitoring and the digital twin model, all data (measured and simulated) will be collected in a joint data base and connected to a decision framework. Finally, the implementation of the improved techniques will be tested at actual facilities. An overview about various relevant tools, their interconnections, and first research results will be shown. T2 - 9th IGD-TP Symposium CY - Zurich, Switzerland DA - 20.09.2022 KW - Predis KW - Monitoring KW - Sensors KW - Simulation KW - Digital twin PY - 2022 AN - OPUS4-55827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Geophysical methods delivering input to geostatistical methods for geotechnical site characterization N2 - Geophysical methods are able to contribute significantly to geotechnical site characterization. In-situ parameters are collected and gaps between boreholes or other direct tests are filled with information. However the limited resolution has to be considered and the indirect geophysical parameters have to be translated into something geotechnically useful. Moreover, the limitations have to be evaluated when including geophysical data into geostatistical models. If done properly, the use of geophysics will help in an efficient and effective site characterization. A comprehensive overview on existing geophysical (mostly seismic) methods is given as well as information on the calibration of geophysical against geotechnical parameters, pitfalls and limitations and some hints how to include these data into geostatistical/geotechnical models. T2 - ICGoES International Conference on Geologicalk Engineering and Geosciences CY - Yogyakarta, Indonesia DA - 21.09.2022 KW - Geophysics KW - Geostatistics KW - Geotechnics PY - 2022 AN - OPUS4-55806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liao, Chun-Man A1 - Bernauer, F. A1 - Igel, H. A1 - Hadziioannou, C. A1 - Niederleithinger, Ernst T1 - Real-time bridge monitoring using ultrasonic techniques combined with six-component (6-C) measurements N2 - This study aims to develop a real time structural health monitoring method by ultrasonic tests combined with advanced six component (6C) translation and rotation measurements. Conventionally, the investigation of the velocity and acceleration response in the translation direction is used to obtain the eigenfrequencies of structures. Recently the measurement of rotation has been considered to fully characterize the dynamic behavior of structures. This research undertakes the evaluation of a novel 6C sensor (IMU50-iXblue) with components originally developed for navigation for the purpose of bridge monitoring. However, as for all vibration recordings, there is a certain influence of environmental conditions (mainly temperature) which may affect evaluation and the results of structural assessment. We propose applying the cross-correlation function to the 6C ambient vibration signals to reconstruct wave propagation and using coda wave interferometry (CWI) to obtain internal velocity variation from waveforms. A field experiment on a large-scale prestressed concrete bridge model is presented. To verify that we are able to identify the pre-stress loss even in presence of temperature effects, we perform measurements in two different scales: the ultrasonic and output-only, vibration measurements. The change in the structural properties due to the pre-stress loss should be detected by the pulse velocity change. The results reveal both the performance and advantages of ultrasonic techniques and the capabilities of 6C sensors. To conclude, the application of CWI to wave signals contributes to a comprehensive assessment for bridge monitoring. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Structural health monitoring KW - Ultrasonic KW - Coda wave interferometry PY - 2022 SP - 1 EP - 10 AN - OPUS4-55660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liao, Chun-Man A1 - Niederleithinger, Ernst A1 - Bernauer, F. A1 - Igel, H. A1 - Hadziioannou, C. T1 - Real time bridge monitoring using ultrasonic techniques combined with six component (6-c) measurements N2 - This study aims to develop a real-time monitoring method for the structural performance by ultrasonic testing in combination with six-component (6-C) translation and rotation measurements. So far, the recordings of the velocity and acceleration response in the translation direction have been used to obtain the eigenfrequencies of structures. Recently, measurement of rotation has been used to fully characterize the dynamic behavior of structures. In this research, 6-C sensors consisting of a three-component rotational seismometer and a three-component broadband seismometer are evaluated for their suitability for bridge monitoring. Since changes in environmental conditions such as temperature during vibration recordings affect the structural evaluation results, cross-correlation function is applied here to the 6-C ambient vibration signals to reconstruct the wave propagation on the one hand, and coda wave interferometry (CWI) is applied to obtain the internal velocity variation from waveforms on the other hand. In field tests on a large-scale prestressed concrete bridge model, it was verified whether the prestress loss can also be determined in presence of temperature effects. For this purpose, measurements were performed in two scales, ultrasonic and output-only vibration measurements. The change in structural properties due to the prestress loss should be detected by the pulse velocity change. The results demonstrate both the performance and advantages of ultrasonic techniques and the capabilities of 6-C sensors. Thus, the application of CWI to wave signals can contribute comprehensively to bridge monitoring. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - 6-C vibration signals KW - Coda wave interferometry KW - Cross-correlation function KW - Prestressed bridge KW - Structural health monitoring KW - Ultrasonic PY - 2022 AN - OPUS4-55646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Hille, Falk A1 - Hofmann, Detlev A1 - Kind, Thomas ED - Isecke, B. ED - Krieger, J. T1 - Überwachung der Brücke Altstädter Bahnhof, Brandenburg./H. Begleituntersuchungen mit moderner Sensorik und zerstörungsfreier Prüfung N2 - Die B1 Brücke am Altstädter Bahnhof in Brandenburg an der Havel wurde im Dezember 2019 aufgrund von während einer turnusmäßigen Inspektion entdeckten Rissen und Hohlstellen entlang der vorgespannten Längsträger gesperrt und im Mai 2021 abgebrochen. In der Zwischenzeit wurde die Brücke detailliert überwacht. Vor dem Abriss wurden zudem umfangreiche Untersuchungen zur Bestandsaufnahme und Schadensanalyse sowie Tests moderner Sensorik vorgenommen. Dabei konnte sowohl die richtige, zuvor nicht sicher bekannte Anzahl von Spanngliedern in den Querträgern sicher ermittelt werden als auch durch moderne Varianten der Schwingungsmessungen und der faseroptischen Sensorik zusätzliche Kenntnisse püber das Bauwerksverhalten ermittelt werden . In dem Beitrag werden die Verfahren mit ihren Möglichkeiten und Grenzen vorgestellt, die Ergebnissee an der Brücke in Brandenburg erläutert und zukünftige Einsatzmöglichkeiten diskutiert. T2 - 5. Brückenkolloquium CY - Ostfildern, Germany DA - 06.09.2022 KW - Monitoring KW - Brücke KW - Radar KW - Vibration KW - Faseroptik PY - 2022 SN - 978-3-8169-3549-0 SP - 555 EP - 566 PB - Expert Verlag CY - Tübingen AN - OPUS4-55627 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liao, Chun-Man A1 - Hicke, Konstantin A1 - Bernauer, F. A1 - Igel, H. A1 - Hadziioannou, C. A1 - Niederleithinger, Ernst ED - Isecke, B. ED - Krieger, J. T1 - Multi-Sensor measurements on a large-scale bridge model N2 - This contribution introduces an investigation of a large-scale prestressed concrete bridge model (“BLEIB” structure at the BAM-TTS open air test site) by means of on-site cooperative measurements. This bridge has an external post-tensioning system and has been instrumented with the ultrasonic transducers, temperature sensors and optical fibers for Distributed Acoustic Sensing (DAS). Our experiment was designed to test the suitability of the novel 6C sensors developed within the framework of the GIOTTO project – the IMU50. The IMU50 sensor enables vibration measurements in translation along three axes and rotation around three axes. The geophone sensors were considered for complementary measurements of vertical velocity response. In the experiment, several perturbations were achieved by controlling the external influence factors such as loading and prestressing changes. The aim of the integrated measurement strategy was to fully observe the results of the condition change and to verify the effectiveness of multiple sensors for bridge monitoring. T2 - 5. Brückenkolloquium CY - Ostfildern, Germany DA - 06.09.2022 KW - Concrete KW - Bridge KW - Monitoring KW - Rotation KW - Distributed acoustic sensing PY - 2022 SN - 978-3-8169-3549-0 SP - 223 EP - 230 PB - Expert Verlag CY - Tübingen AN - OPUS4-55625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Hille, Falk A1 - Hofmann, Detlev A1 - Kind, Thomas T1 - Überwachung der Brücke Altstädter Bahnhof, Branden-burg./H. N2 - Die B1 Brücke am Altstädter Bahnhof in Brandenburg an der Havel wurde im Dezember 2019 aufgrund von während einer turnusmäßigen Inspektion entdeckten Rissen und Hohlstellen entlang der vorgespannten Längsträger gesperrt und im Mai 2021 abgebrochen. In der Zwischenzeit wurde die Brücke detailliert überwacht. Vor dem Abriss wurden zudem umfangreiche Untersuchungen zur Bestandsaufnahme und Schadensanalyse sowie Tests moderner Sensorik vorgenommen. Dabei konnte sowohl die richtige, zuvor nicht sicher bekannte Anzahl von Spanngliedern in den Querträgern sicher ermittelt werden als auch durch moderne Varianten der Schwingungsmessungen und der faseroptischen Sensorik zusätzliche Kenntnisse püber das Bauwerksverhalten ermittelt werden . In dem Beitrag werden die Verfahren mit ihren Möglichkeiten und Grenzen vorgestellt, die Ergebnissee an der Brücke in Brandenburg erläutert und zukünftige Einsatzmöglichkeiten diskutiert. T2 - 5. Brückenkolloquium CY - Ostfildern, Germany DA - 06.09.2022 KW - Monitoring KW - Brücke KW - Radar KW - Vibration KW - Faseroptik PY - 2022 AN - OPUS4-55628 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liao, Chun-Man A1 - Niederleithinger, Ernst A1 - Hicke, Konstantin A1 - Bernauer, F. A1 - Igel, H. A1 - Hadziioannou, C. T1 - Multi-Sensor measurements on a large-scale bridge model N2 - This contribution introduces an investigation of a large-scale prestressed concrete bridge model (“BLEIB” structure at the BAM-TTS open air test site) by means of on-site cooperative measurements. This bridge has an external post-tensioning system and has been instrumented with the ultrasonic transducers, temperature sensors and optical fibers for Distributed Acoustic Sensing (DAS). Our experiment was designed to test the suitability of the novel 6C sensors developed within the framework of the GIOTTO project – the IMU50. The IMU50 sensor enables vibration measurements in translation along three axes and rotation around three axes. The geophone sensors were considered for complementary measurements of vertical velocity response. In the experiment, several perturbations were achieved by controlling the external influence factors such as loading and prestressing changes. The aim of the integrated measurement strategy was to fully observe the results of the condition change and to verify the effectiveness of multiple sensors for bridge monitoring. T2 - 5. Brückenkolloquium CY - Ostfildern, Germany DA - 06.09.2022 KW - Concrete KW - Bridge KW - Monitoring KW - Rotation KW - Distributed acoustic sensing PY - 2022 AN - OPUS4-55626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Feistkorn, S. A1 - Algernon, D. A1 - Arndt, R. A1 - Ebell, Gino A1 - Friese, M. A1 - Grosse, C. U. A1 - Holstein, R. A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schulze, S. A1 - Taffe, A. A1 - Walther, A. A1 - Wolf, J. A1 - Zoega, A. A1 - Zwanzig, M. T1 - Introduction to DIN 4871: Qualification of NDT Personnel in Civil Engineering (NDT-CE) N2 - Recently, non-destructive testing in civil engineering (NDT-CE), in particular of concrete components, has successfully mastered the leap from research to practice. Several methods have been established for field inspections to determine the concrete cover of reinforcement or to estimate the compressive strength as well as other parameters related to the concrete material. In addition, the application of nondestructive testing is indispensable, if information about the inner structure - such as the location of rebars and tendon ducts or the damage-related condition assessment to detect grouting defects, honeycombs, delamination, or corrosion - is required. Besides the selection of a suitable NDT method and an appropriate inspection system, the reliability of the results depends largely on the person who applies the non-destructive inspection technique and evaluates the inspection results. To ensure a high quality of non-destructive concrete evaluation as well as to keep the uncertainty caused by the inspection personnel to a minimum, structured, consistent and regulated theoretical as well as practical training of inspection personnel is essential. To close this gap, the subcommittee of education (UA-A) within the committee for NDT-CE of the German Society for Nondestructive Testing (DGZfP) has been reactivated in 2018 to establish uniform training standards for nondestructive concrete inspections in the long term. The subcommittee consists of scientists, practitioners, authorities, and clients. So far, the national standard DIN 4871 “Non-destructive testing - Qualification and Certification of NDT personnel in Civil Engineering (NDT-CE)” was developed and is currently under review. This standard considers the civil-industry-specifics, for example, that standards for NDT of concrete, as well as related product standards with a few exceptions, still do not exist at the moment. Within this presentation, the concept, the connection to ISO 9712 and other standards as well as an overview of the developed German standard DIN 4871 will be presented. T2 - NDT-CE 2022 CY - Zurich, Switzerland DA - 16.08.2022 KW - Non-destrucive testing KW - Civil engineering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555250 UR - https://www.ndt.net/article/ndtce2022/paper/66594_manuscript.pdf VL - 2022/09 SP - 1 EP - 12 PB - NDT.net CY - Bad Breisig AN - OPUS4-55525 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baensch, Franziska A1 - Hofmann, Detlef A1 - Johann, Sergej A1 - Tiebe, Carlo A1 - Basedau, Frank A1 - Sturm, Patrick A1 - Lay, Vera A1 - Niederleithinger, Ernst T1 - Multi-sensor conception for safe sealing structures in underground repositories N2 - The project "SealWasteSafe" of the Bundesanstalt für Materialforschung und -prüfung (BAM, Berlin) deals with sealing structures applied for underground disposal of nuclear waste from two perspectives: (1) material improvement for application in sealing constructions and (2) feasibility study regarding multi-sensor approaches to ensure quality assurance and long-term monitoring. One specimen of 150 l made of alkali-activated material, which was found innovative and suitable for sealing constructions based on preliminary laboratory studies, and, for comparison purpose, another one made of salt concrete, are manufactured with an integrated multi-sensory setup for quality assurance and long-term-monitoring. The specimens were left in their cast form and additionally thermally insulated to simulate the situation in the repository. The multi-sensory concept comprises RFID technology embedded in the specimens suppling material temperature and moisture measurements, integrated fibre optic sensing allowing strain measurement and acoustic emission testing for monitoring possible crack formation. Overall, the suitability and the functionality of the sensors embedded into and attached to strongly alkaline (pH > 13 for the AAM) and salt corrosive (NaCl) environment was proven for the first 672 h. First temperature measurement based on RFID succeeded after 626 h for the alkali-activated material and after 192 h for the conventional salt concrete. Strain measurement based on distributed fibre optic sensing turned out the alkali-activated material with > 1 mm m-1 undergoing approximately twice the compression strain as the salt concrete with strains < 0.5 mm m-1. In contrast, the acoustic emission first and single hits representing crack formation in numbers, was found for alkali-activated material half of that detected at the salt concrete. T2 - SMIRT 26 CY - Berlin/Potsdam, Germany DA - 10.07.2022 KW - SealWasteSafe KW - Monitoring KW - Acoustic emission KW - Fibre optic sensing KW - RFID technology KW - alkali-activated material PY - 2022 SP - 1 EP - 10 AN - OPUS4-55371 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Algernon, D. A1 - Arndt, R. A1 - Ebsen, B. A1 - Feistkorn, S. A1 - Friese, M. A1 - Große, C. A1 - Kathage, S. A1 - Keßler, S. A1 - Kurz, J. A1 - Küttenbaum, Stefan A1 - Lohse, C. A1 - Maack, Stefan A1 - Niederleithinger, Ernst A1 - Schickert, M. A1 - Schröder, G. A1 - Taffe, A. A1 - Walther, A. A1 - Wilcke, M. A1 - Wolf, J. A1 - Wöstmann, Jens T1 - Richtlinie B-LF 01: Leitfaden zur Erstellung von Prüfanweisungen für die Zerstörungsfreie Prüfung im Bauwesen (ZfP Bau) N2 - Der vorliegende Leitfaden dient zur Unterstützung der Entwicklung und Umsetzung von Prüfanweisungen für ZfP-Verfahren im Bauwesen. Er gibt einen Überblick über Verwendungszweck, Erstellung und Inhalte von Prüfanweisungen unter Berücksichtigung einheitlicher Standardisierungsziele. KW - Prüfanweisung KW - Beton KW - Leitfaden PY - 2022 SN - 978-3-947971-23-7 SP - 1 EP - 9 PB - Deutsche Gesellschaft für Zerstörungsfreie Prüfung e.V. (DGZfP) CY - Berlin ET - 1. Aufl., April 2022 AN - OPUS4-54985 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fontoura Barroso, Daniel A1 - Epple, Niklas A1 - Niederleithinger, Ernst T1 - A Portable Low-Cost Ultrasound Measurement Device for Concrete Monitoring N2 - This paper describes a new ultrasonic measuring device called “W-Box”. It was developed based on the requirements of the DFG Forschergruppe (research unit) CoDA for a portable device for monitoring of concrete specimens, models and actual structures using embedded ultrasonic transducers as well as temperature and humidity sensors. The W-Box can send ultrasonic pulses with a variable frequency of 50–100 kHz to one selectable transducer and records signals from up to 75 multiplexed channels with a sample rate of 1 MHz and a resolution of 14 bits. In addition, it measures temperature and humidity with high accuracy, adjustable amplification, restarts automatically after a power failure and can be fully controlled remotely. The measured data are automatically stored locally on-site data quality checks and transferred to remote servers. The comparison of the W-Box with a laboratory setup using commercial devices proves that it is equally reliable and precise, at much lower cost. The W-Box also shows that their measurement capacities, with the used embedded ultrasonic transducers, can reach above 6 m in concrete. KW - Low-cost KW - Coda wave interferometry KW - Ultrasound KW - IoT KW - Non-destructive testing PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-546756 DO - https://doi.org/10.3390/inventions6020036 SN - 2411-5134 VL - 6 IS - 2 SP - 1 EP - 17 PB - MDPI CY - Basel, Switzerland AN - OPUS4-54675 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst T1 - Zerstörungsfreie Prüfung von Fundamenten vor der Wiedernutzung N2 - Für die Qualitätssicherung von neuen Fundamenten steht eine Reihe von zerstörungsfreien Prüfverfahren zur Verfügung. Das Portfolio reicht von der einfachen Hammerschlagmethode („Pfahlintegritätsprüfung“) bis zu aufwändigen Ultraschallverfahren für meterstarke Fundamentplatten. Aber funktionieren die Verfahren auch im Bestand? Lassen sich die für Wieder-, Um- und Weiternutzung notwendigen Daten erfassen? Und wie werden die zerstörungsfreien Prüfverfahren erfolgreich in Untersuchungskonzepte integriert? Dies wird vor allem am Beispiel der Fundamente von Freileitungsmasten diskutiert. T2 - RWTH Forum Geotechnik CY - Online meeting DA - 20.1.2022 KW - Fundamente KW - Wiedernutzung KW - Zerstörungsfreie Prüfung KW - Parallelseismik KW - Pfahlgründung PY - 2022 AN - OPUS4-54236 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Wang, Xin A1 - Epple, Niklas A1 - Schumacher, T. A1 - Ahmend, S. A1 - Klikowicz, P. T1 - Ultrasonic coda wave monitoring of concrete structures: First experiences with large-scale experiments and real structures N2 - Ultrasonic monitoring, making use of the sensitivity of the coda of repeated transmission meas-urements to changes in stress, temperature, moisture, as well as localized or distributed damage, has gotten at-tention in structural health monitoring (SHM) research recently. Analysis methods such as coda wave inter-ferometry (CWI), including its nonlinear extension, have been shown to be able to measure ultrasonic wave velocity changes with a 1∙10-5 resolution, while indicators such as cross-correlation or cross-coherence have been used to distinguish between reversible and irreversible changes. Several small- and large-scale laboratory experiments have demonstrated that stress changes in structures can be captured or damage detected in a very early stage. The use of this technique for pre-warning before failure are currently under investigation, as well as detailed research on the physical causes and the connection between ultrasonic wave properties and materi-al/structural behavior. Recently, several of large-scale laboratory and real structures have been instrumented with embedded ultrasonic transducers to gather experience and evidence on how to use this technology in re-al-world applications. Preliminary results from installations on a new bridge, an existing bridge, a tunnel, a la-boratory earthquake test as well as a historic stadium in Germany, Poland, and the United States, respectively, are presented. Environmental influences (mainly temperature) and validation by load tests are discussed. T2 - IABMAS 2020 CY - Online meeting DA - 11.04.2021 KW - Ultrasound KW - Monitoring KW - Coda wave interferometry KW - Concrete KW - Bridges PY - 2021 AN - OPUS4-54167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Mielentz, Frank A1 - Effner, Ute A1 - Oesch, Tyler A1 - Prabhakara, Prathik T1 - Ultraschallprüfung von Verschlussbauwerken im Salinar N2 - Zu jedem Endlager gehört die Entwicklung eines Verschlusskonzept. Im Endlager Morsleben und an anderer Stelle werden in Abhängigkeit vom Wirtsgestein verschiedene Materialien und Bauweisen für Streckenverschlüsse entwickelt und in großem Maßstab erprobt. Hierzu gehören auch Maßnahmen der Qualitätssicherung, die Informationen über Ausführung und Zustand der Versuchsbauwerke liefern. Hierzu werden von der Bundesanstalt für Materialforschung und -prüfung (BAM) für verschiedene Forschungsvorhaben und Prüfaufträge Methoden und Geräte getestet, verbessert und vor Ort unter Tage eingesetzt Die hier beschriebenen Verfahren lassen sich auch zu Untersuchungen im Wirtsgestein anwenden. T2 - Tage der Standortauswahl CY - Freiberg/S., Germany DA - 11.02.2021 KW - Endlager KW - Verschlussbauwerke KW - Qualitätssicherung KW - Ultraschall PY - 2021 AN - OPUS4-54166 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Niederleithinger, Ernst A1 - Mielentz, Frank A1 - Effner, Ute A1 - Oesch, Tyler A1 - Prabhakara, Prathik T1 - Ultraschallprüfung von Verschlussbauwerken im Salinar N2 - Zu jedem Endlager gehört die Entwicklung eines Verschlusskonzept. Im Endlager Morsleben und an anderer Stelle werden in Abhängigkeit vom Wirtsgestein verschiedene Materialien und Bauweisen für Streckenverschlüsse entwickelt und in großem Maßstab erprobt. Hierzu gehören auch Maßnahmen der Qualitätssicherung, die Informationen über Ausführung und Zustand der Versuchsbauwerke liefern. Hierzu werden von der Bundesanstalt für Materialforschung und -prüfung (BAM) für verschiedene Forschungsvorhaben und Prüfaufträge Methoden und Geräte getestet, verbessert und vor Ort unter Tage eingesetzt. Die hier beschriebenen Verfahren lassen sich auch zu Untersuchungen im Wirtsgestein anwenden. T2 - Tage der Standortauswahl CY - Freiberg/S., Germany DA - 11.02.2021 KW - Endlager KW - Verschlussbauwerke KW - Qualitätssicherung KW - Ultraschall PY - 2021 AN - OPUS4-54165 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Niederleithinger, Ernst ED - Meyendorf, N. ED - Ida, N. ED - Singh, R. ED - Vrana, J. T1 - NDE 4.0 in Civil Engineering N2 - Civil engineering industry is one of the most important industry sectors in the worldwide economy. It contributes significantly to the gross economic product and general employment. Even more important, it provides many of the basic needs of the society (e.g., housing, infrastructure, and protection from natural hazards). The concept of “Industry 4.0” or “Smart Production” has not yet made significant progress in the civil engineering industry. The designing, building, and operating processes are still widely dominated by the exchange of printed documents and drawings. Most objects (buildings and other constructions) are unique, and a large part of the production still requires a large amount of manual labor. As-built documentation and quality assurance are often neglected. Civil engineering is among the industry sectors with the lowest level of digitalization and the lowest gain in productivity. However, this is going to change. In the past decade, several drivers have challenged the ways clients, contractors, and authorities currently operate. These drivers include but are not limited to an increasing demand for serialization and automatization or the mandatory introduction of “Building Information Modeling” (BIM) in public procurement as well as the upcoming use of digital twins. NDE plays an increasing role in quality assurance, condition assessment, and monitoring of structures. However, with very few exceptions, applications are mostly nonstandardized and performed only at selected sites. To change this, the NDT-CE community including manufacturers, service providers, clients, and the scientific community must work consistently on open data formats, interfaces to BIM, standardization, and validated ways for a quantitative use of the results in the assessment of constructions. KW - NDE 4.0 KW - Civil engineering KW - BIM KW - IFC PY - 2021 SN - 978-3-030-48200-8 DO - https://doi.org/10.1007/978-3-030-48200-8 SP - 1 EP - 14 PB - Springer Nature CY - Cham, Switzerland AN - OPUS4-54161 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -