TY - CONF A1 - Habel, Wolfgang A1 - Röben, R. A1 - Hüttl, R. A1 - Kuchejda, M. ED - Ramos, G. A. T1 - Monitoring of corrosion protection in reinforced concrete structures using an integrated pH optode T2 - SHMII-5 - 5th International conference on structural health monitoring of intelligent infrastructure (Proceedings) N2 - Corrosion in steel-reinforced concrete structures is a critical issue. Corrosion appears if the pH value of the concrete matrix decreases due to deterioration of the Calcium hydroxide layer on the Steel surface. The safest Information about potential danger of Steel corrosion is the knowledge of the pH value of concrete. The paper presents a Tiber optic pH sensor for long-term monitoring of the pH value of reinforced concrete structures at risk from corrosion. The sensor probe is small (about 8 mm in diameter), can be embedded into the concrete matrix and observe changes in pH over years. Several sensor probes can be staggered to detect the progression of pH decrease. The pH values can be resolved with 0.1 to 0.2 pH value in the ränge between 12.0 and 9.5. The structure of the pH measurement System, longterm test results and the design to achieve stable probes will be explained. Experienee from test applications of pH sensors embedded in grouted anchors and in concrete components for a cooling tower will be presented. T2 - SHMII-5 - 5th International conference on structural health monitoring of intelligent infrastructure CY - Cancún, Mexico DA - 11.12.2011 PY - 2011 IS - Session 15, Topic 4.5 SP - 2 EP - 8 PB - National Autonomous University of Mexico CY - Mexico City AN - OPUS4-25311 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habel, M. A1 - Vaterrodt, K. A1 - Heidmann, G. A1 - Habel, Wolfgang A1 - Vogelsang, R. A1 - Weissenberg, W. A1 - Sekula, O. A1 - Pepper, D. A1 - Emanuel, H. A1 - Plath, R. T1 - Optical PD detection in stress cones of HV cable accessories T2 - Proceedings of the 8th International Conference on Insulated Power Cables N2 - Sensitive partial discharge (PD) measurements on HV/EHV cable systems are usually based on electrical or electromagnetic PD detection. Unfortunately, interferences may significantly reduce sensitivity, especially in on-site after-installation testing and, even more, in on-line PD monitoring. This paper deals with optical PD detection, which is absolutely immune to any kind of electromagnetic interference. Optical PD detection necessarily requires transparent or translucent insulation systems to be applicable. Stress cone elements for HV/EHV cable accessories meet the requirements for optical PD detection, if made from transparent silicone elastomers. T2 - 8th International Conference on Insulated Power Cables CY - Versailles, France DA - 19.06.2011 PY - 2011 IS - B.8.4 SP - 1 EP - 5 PB - Jicable CY - Paris AN - OPUS4-25310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habel, Wolfgang A1 - Schukar, Vivien ED - Ramos, G. A. T1 - Validation of strain sensors to achieve reliable measurement results T2 - SHMII-5 - 5th International conference on structural health monitoring of intelligent infrastructure (Proceedings) N2 - Fiber optic strain sensors are increasingly used and sensor Systems are provided with specifications. Even if the performance is well specified, the strain characteristics of the sensor, strain transfer factor, mechanical stability under thermal influences, the performance of applied strain sensors can seriously differ from virgin sensor’s the performance. Therefore the contribution considers validation issues to come to reliable strain measurements and how to validate strain measurements of applied sensors. A new validation facility will be presented. T2 - SHMII-5 - 5th International conference on structural health monitoring of intelligent infrastructure CY - Cancún, Mexico DA - 11.12.2011 PY - 2011 IS - Session 20, Topic 2.3 SP - 1 EP - 13 PB - National Autonomous University of Mexico CY - Mexico City AN - OPUS4-25309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schilder, Constanze A1 - Hofmann, Detlef A1 - Kohlhoff, Harald A1 - Habel, Wolfgang ED - Ramos, G. A. T1 - Structure-integrated fiber-optic strain wave sensor for concrete pile testing and monitoring T2 - SHMII-5 - 5th International conference on structural health monitoring of intelligent infrastructure (Proceedings) N2 - Reinforced concrete piles are used in case of structures that are constructed on soft ground to transfer the loads into deeper strata with sufficient bearing capacity. In order to determine the pile’s behavior and possible damage, static and dynamic pile tests are carried out. Dynamic measurements taken from the pile head can show the bearing behavior and structural integrity by using the theory of wave propagation. In order to receive more precise information about the pile features, now, a string of sensors is embedded at different levels of the pile. A fiber optic strain wave sensor, based on the extrinsic Fabry-Perot interferometer (EFPI), has already been developed and tested in full-scale field tests by Schallert (2010). It was possible to detect the introduced deformation caused by the static load and the dilatational wave during dynamic loading. Although the full-scale tests were successful, the engineering design of the sensor body left room - from the economical point of view - to be optimized. After laboratory tests with the optimized sensor, a cast-in-situ bored pile has been built at the BAM Test Site Technical Safety in Horstwalde, South of Berlin. Additionally to the EFPI sensors, fiber Bragg grating (FBG) sensors, temperature sensors and resistance strain gauge (RSG) sensors are embedded in order to compare the signals with each other. In this paper, the modified sensor and the Setup of the cast-in-situ bored pile along with results of dynamic tests are shown. T2 - SHMII-5 - 5th International conference on structural health monitoring of intelligent infrastructure CY - Cancún, Mexico DA - 11.12.2011 KW - Fibre optic sensors KW - Monitoring KW - Concrete pile KW - Foundation KW - Integrity testing PY - 2011 IS - Topic_04.Cat_4.2-abs002 SP - 1 EP - 8 PB - National Autonomous University of Mexico CY - Mexico City AN - OPUS4-25142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habel, Wolfgang A1 - Kusche, Nadine A1 - Münzenberger, Sven A1 - Schukar, Vivien T1 - KALFOS - a validation facility for strain transfer characterization of surface-applied strain sensors T2 - SAE 2011 AeroTech Congress & Exhibition N2 - Strain sensors embedded in or attached to structural components have to measure the real deformation of the structure over the whole period of use. The user must know how reliably installed sensors provide strain measurement results. For this purpose, test facilities or coupon tests are used. In order to characterize the strain transfer quality from the host structure into surface-applied strain sensors, a unique testing facility has been developed. This facility can be used both for fiber optic and resistance strain sensors. Originally developed for fiber Bragg grating based sensors, the KALFOS facility (=calibration of fiber optic sensors) uses Digital Image Correlation (DIC) and Electronic Speckle Pattern Interferometer (ESPI) as unbiased referencing methods. It is possible to determine experimentally the strain transfer mechanism under combined thermal and mechanical loading conditions. This experimental characterization method will reveal weaknesses in commonly used strain sensors, and the investigation of the material systems used for fiber optic and other strain sensors (particularly the coating/substrate - adhesive combination). The KALFOS facility allows matching of specific measurement requirements with environmental conditions. T2 - SAE 2011 AeroTech Congress & Exhibition CY - Toulouse, France DA - 18.10.2011 KW - Fiber optic sensors KW - Structural health monitoring KW - Validation KW - Strain sensor KW - Surface application PY - 2011 DO - https://doi.org/10.4271/2011-01-2606 IS - Paper 2011-01-2606 SP - 1 EP - 7 AN - OPUS4-24643 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kusche, Nadine A1 - Schukar, Vivien A1 - Schilder, Constanze A1 - Köppe, Enrico A1 - Habel, Wolfgang ED - Chang, F.-K. T1 - Development and qualification of FBG-based strain patches and rosettes T2 - IWSHM 2011 - 8th International workshop on structural health monitoring 2011 (Proceedings) N2 - A fibre Bragg grating (FBG) strain patch specially adapted for long-term and high-strain applications was developed and characterised. Additionally, in the case of unknown main stress axis, two fibre optic strain rosettes were developed. The design concept for the patch and the rosettes is based on a glass fibre reinforced plastic (gfrp) carrier material. The patches were characterised due to their strain gauge factor and fatigue behaviour. As a result, FBG strain patches with linear strain behaviour and excellent fatigue resistance were developed and can be used as part of a monitoring system for aerospace structures or wind turbine power plants. The rosettes were designed to be small in geometrical size and their strain transfer behaviour was characterised. T2 - 8th International workshop on structural health monitoring 2011 CY - Stanford, CA, USA DA - 13.09.2011 KW - Fibre Bragg grating KW - Patch KW - Rosette KW - Strain gauge factor KW - Fatigue behaviour KW - Validation PY - 2011 SN - 978-1-60595-053-2 VL - 2 SP - 1457 EP - 1465 PB - DEStech Publications, Inc. AN - OPUS4-24512 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habel, Wolfgang A1 - Schukar, Vivien ED - Ecke, W. ED - Peters, K.J. ED - Matikas, T.E. T1 - FOS standards and testing methods to validate fibre optic strain measurements T2 - Smart sensor phenomena, technology, networks, and systems 2011 (SPIE-Proceedings) N2 - Fiber optic sensors are increasingly used because of their outstanding performance or if special requirements avoid the application of conventional electrical sensors. The scientific background for optical fiber sensors is well developed; however, the characteristic of sensors applied in rather harsh environment are almost always different from characteristics determined in laboratory or before its installation. In order to achieve long-term stable function and reliable measurement data after application and under harsh environmental conditions, guidelines for characterization and specification of sensor components are needed as well as methodologies for testing the sensor performance must be developed. Performance tests carried out revealed that there are still some restrictions with respect to long-term reliable use: first, some sensor products available on the market are not very often appropriately characterized, described and validated; second, application procedures are not always defined due to a lack of understanding the micromechanical issues in the interface zone between sensor and measuring object. Application procedures and profound knowledge of materials behaviour are necessary to get results from the sensor that can be reliably used. The paper describes first guidelines to prove the quality of fiber optic strain sensors, a testing facility developed for unbiased tests and certification of surface-applied sensors as well as result from comparison of commercially available strain sensors. T2 - SPIE-Conference 'Smart sensor phenomena, technology, networks, and systems 2011' CY - San Diego, CA, USA DA - 06.03.2011 KW - Fiber optics KW - Strain sensor KW - Reliability KW - Durability KW - Creep KW - Application KW - Adhesive KW - Standards KW - Guideline KW - Testing PY - 2011 SN - 978-0-8194-8547-2 DO - https://doi.org/10.1117/12.881238 VL - 7982 SP - 79820O-1 EP - 79820O-12 AN - OPUS4-24271 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Habel, Wolfgang A1 - Buchholz, Uwe A1 - Heidmann, G. A1 - Höhse, Marek A1 - Lothongkam, Chaiyaporn T1 - Fibre-optic sensors for early damage detection in plastic insulations of high-voltage facilities T2 - ISH 2011 - 17th International symposium on high voltage engineering N2 - Fibre-optic sensors (FOS) have great potential as online damage detectors when integrated in HV accessories. Among their well-known use as temperature and strain sensors, there are some more opportunities of use, e. g. they can intimately be embedded in polymeric insulations of HV cable terminations and joints to detect and monitor partial discharges right at the location of their origin. Two FOS types for early PD detection were investigated: an embeddable fibre-optic acoustic sensor to measure acoustlc waves in polymeric insulations generated by PDs, and a fluorescent optical fibre to detect first optical effects during ionization processes in the insulation material. The paper descrlbes these methods, related monitoring Problems and shows first test results. T2 - ISH 2011 - 17th International symposium on high voltage engineering CY - Hannover, Germany DA - 22.08.2011 KW - Fibre optic sensors KW - Monitoring KW - Materials behavior KW - Early shrinkage of cement paste PY - 2011 SN - 978-3-8007-3364-4 SP - 2070 EP - 2075 PB - VDE Verlag GmbH AN - OPUS4-24270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -