TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Mass and mole fractions in calibration-free LIBS N2 - This technical note highlights the fact that CF-LIBS algorithms work in mole fractions, while results of spectrochemical analysis are usually reported in mass fractions or mass percent. Ignoring this difference and not converting mole fractions to mass fractions can lead to errors in reported concentrations determined by the CF-LIBS method and inadequate comparison of these concentrations with certified concentrations. Here, the key points of the CF-LIBS algorithm are reproduced and the formulae for converting a mole fraction to a mass fraction and vice versa are given. Several numerical examples are also given, which show that the greater the difference between the molar mass of an individual element in a sample and the average molar mass, the greater the discrepancy between the mole and mass fractions. KW - Spectroscopy KW - Analytical Chemistry KW - LIBS KW - Calibration PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598611 DO - https://doi.org/10.1039/d4ja00028e SN - 0267-9477 VL - 39 IS - 4 SP - 1030 EP - 1032 PB - Royal Society of Chemistry (RSC) AN - OPUS4-59861 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Extension of the Boltzmann plot method for multiplet emission lines N2 - The Boltzmann plot method is widely used to determine the temperature of laser induced plasma. It involves the use of individual lines that are not easy to find in complex spectra and/or in the spectral range available. If the number of such lines is not enough to build a reliable Boltzmann plot, overlapping lines are often used, which are separated by software. However, line separation is a rather imprecise procedure, which, in addition, requires significant computational costs. This study proposes an extension of the Boltzmann plot method that allows a specific group of unresolved lines to be included in a Boltzmann plot without the need to separate them. This group of lines are multiplets, lines of the same element with similar upper and lower transition states. The multiplet lines along with the individual lines are included in the algorithm, which also includes a correction for self-absorption and is used to determine the plasma temperature. The algorithm is tested on synthetic spectra which are consistent with the model of a homogeneous isothermal plasma in local thermodynamic equilibrium and is shown to be superior to the standard Boltzmann plot method both in more accurate determination of the plasma temperature and in a significant reduction in the computational time. The advantages and disadvantages of the method are discussed in the context of its applications in laser induced breakdown spectroscopy. KW - LIBS KW - Spectroscopy KW - Boltzmann plot KW - Multiplet KW - Spectral overlap PY - 2023 DO - https://doi.org/10.1016/j.jqsrt.2023.108741 SN - 1879-1352 VL - 310 SP - 1 EP - 5 PB - Elsevier AN - OPUS4-58058 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser induced breakdown spectroscopy to investigate the chemical composition of concrete N2 - Laser-induced breakdown spectroscopy (LIBS) is a spectroscopic method for detecting the chemical composition of optically accessible surfaces. In principle, the measurement of all elements of the periodic table is possible. System calibrations allow the quantification of element concentrations. In combination with scanner systems, the two-dimensional element distribution can be determined. Even rough surfaces can be measured by online adjustment of the laser focus. To detect element ingress into the concrete, typically cores are taken, cut in half, and LIBS measurements are performed on the cross-section. The high spatial resolution as well as the simultaneous multi-element analysis enables a separate evaluation of the binder-matrix and aggregates. Therefore, the element concentrations can be determined directly related to the cement paste. LIBS measurements are applicable in the laboratory, on-site and also over a distance of several meters. Common applications include the investigation of material deterioration due to the ingress of harmful ions and their interaction in porous building materials. LIBS is able to provide precise input parameters for simulation and modelling of the remaining lifetime of a structure. Besides the identification of materials, also their composition can be determined on hardened concrete, such as the type of cement or type of aggregate. This also involves the identification of environmentally hazardous elements contained in concrete. Another possible application is the detection of the composition of material flows during dismantling. Non-contact NDT for “difficult to assess” structures as an example application through safety glass or in combination with robotics and automation are also possible. This work presents the state of the art concerning LIBS investigations on concrete by showing exemplary laboratory and on-site applications. T2 - NDE NucCon 2023 CY - Espoo, Finland DA - 25.01.2023 KW - LIBS KW - Concrete PY - 2023 AN - OPUS4-57323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser-induced breakdown spectroscopy to investigate the chemical composition of concrete N2 - Laser-induced breakdown spectroscopy (LIBS) is a spectroscopic method for the analysis of the chemical composition of sample materials. Generally, the measurement of all elements of the periodic table is possible. In particular, light elements such as H, Li, Be, S, C, O, N and halogens can be measured. Calibration with matrix-matching standards allows the quantification of element concentrations. In combination with scanner systems, the two-dimensional element distribution can be determined. Even rough surfaces can be measured by online adjustment of the laser focus. LIBS can also be used on-site with mobile systems. Hand-held systems are available for point measurements. Common applications include the investigation of material deterioration due to the ingress of harmful ions and their interaction in porous building materials. Due to the high spatial resolution of LIBS and the consideration of the heterogeneity of concrete, the determination of precise input parameters for simulation and modelling of the remaining lifetime of a structure is possible. In addition to the identification of materials, it is also possible to assess the composition for example of hardened concrete, which involves the cement or aggregate type used. Other important fields of application are the detection of environmentally hazardous elements or the material classification for sorting heterogeneous material waste streams during dismantling. Non-contact NDT for “difficult to assess” structures as an example application through safety glass or in combination with robotics and automation are also possible. In this work, an overview of LIBS investigations on concrete is given based on exemplary laboratory and on-site applications. T2 - NDE NucCon 2023 CY - Espoo, Finland DA - 25.01.2023 KW - LIBS KW - Concrete KW - Chemical analysis PY - 2023 UR - https://www.aalto.fi/en/nde-nuccon-2023 SP - 351 EP - 359 AN - OPUS4-57303 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Gornushkin, Igor B. T1 - Investigation of a method for the correction of self-absorption by Planck function in laser induced breakdown spectroscopy N2 - The electron density and temperature of a laser-induced plasma can be determined from the width and intensity of the spectral lines, provided that the corresponding optical transitions are optically thin. However, the lines in laser induced plasma are often self-absorbed. One of the methods of correction of this effect is based on the use of the Planck function and an iterative numerical calculation of the plasma temperature. In this study, the method is further explored and its inherent errors and limitations are evaluated. For this, synthetic spectra are used that fully correspond to the assumed conditions of a homogeneous isothermal plasma at local thermodynamic equilibrium. Based on the error analysis, the advantages and disadvantages of the method are discussed in comparison with other methods of self-absorption correction. KW - LIBS KW - Self-absorption KW - Planck function PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572677 DO - https://doi.org/10.1039/D2JA00352J SN - 0267-9477 SP - 1 EP - 6 PB - Royal Society of Chemistry (RSC) AN - OPUS4-57267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Tobias A1 - Wilsch, Gerd A1 - Gornushkin, Igor B. A1 - Kratochvilo, L. A1 - Pořízka, P. A1 - Kaiser, J. A1 - Millar, S. A1 - et al., T1 - Interlaboratory comparison for quantitative chlorine analysis in cement pastes with laser induced breakdown spectroscopy N2 - Concrete structures experience severe damage during service, for example due to pitting corrosion of rebars caused by the ingress of chlorine (Cl) into the porous concrete structure. The ingress can be monitored using laser-induced breakdown spectroscopy (LIBS), a recently introduced civil engineering technique used to detect Cl in concrete structures in addition to conventional wet chemistry methods. The key advantages of LIBS are high spatial resolution, which is important when analyzing heterogeneous concrete samples, as well as the almost complete absence of sample preparation. To assess LIBS as a reliable analytical method, its accuracy and robustness must be carefully tested. This paper presents the results of an interlaboratory comparison on the analysis of Cl in cement paste samples conducted by 12 laboratories in 10 countries. Two sets of samples were prepared with Cl content ranging from 0.06 to 1.95 wt% in the training set and 0.23–1.51 wt% in the test set, with additional variations in the type of cement and Cl source (salt type). The overall result shows that LIBS is suitable for the quantification of the studied samples: the average relative error was generally below 15%. The results demonstrate the true status quo of the LIBS method for this type of analysis, given that the laboratories were not instructed on how to perform the analysis or how to process the data. KW - LIBS KW - Interlaboratory comparison KW - Round robin test KW - Cement KW - Chlorine PY - 2023 DO - https://doi.org/10.1016/j.sab.2023.106632 SN - 0584-8547 VL - 202 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-57102 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser Induced Breakdown Spectroscopy – A Tool for the Chemical Investigation of Concrete N2 - LIBS is a complementary method to XRF and can detect all elements without the need for vacuum conditions. Automated systems are already commercially available capable of scanning surfaces with a resolution of up to 0.1 mm within a few minutes. In addition to possible applications in R&D, LIBS is also used for practical applications in building materials laboratories and even on-site. In view of ageing infrastructure facilities, a reliable assessment of the condition of concrete structures is of increasing interest. For concrete structures, the ingress of potential harmful ions is affecting the serviceability and eventually structural performance. Pitting corrosion induced by penetrating chlorides is the dominant deterioration mechanism. Condition assessment based on frequently performed chloride profiling can be useful to identify the extent and evolution of chloride ingress. This could prove to be more economical than extensive repairs, especially for important infrastructure facilities. Currently the most common procedure for determining the chloride content is wet chemical analysis with standard resolution of 10 mm. The heterogeneity is not considered. LIBS is an economical alternative for determining the chloride content at depth intervals of 1 mm or less. It provides 2D distributions of multiple elements and can locate spots with higher concentrations. The results are directly correlated to the mass of binder and can also be performed on-site with a mobile LIBS-System. The application of a LIBS-system is presented. Calibration is required for quantitative analysis. Concrete cores were drilled, sliced and analyzed to determine the 2D-distribution of harmful elements. By comparing the chloride ingress and the carbonation, the interaction of both processes can be visualized in a measurement that takes less than 10 minutes for a 50 mm x 100 mm drill core. A leaflet on the use of LIBS for the chloride ingress assessment has been completed. T2 - NDT-CE 2022 - The International Symposium on Nendestructive Testing in Civil Engineering CY - Zurich, Switzerland DA - 16.08.2022 KW - Chlorides KW - Corrosion KW - Imaging KW - Service life KW - Damage assessment KW - LIBS PY - 2022 AN - OPUS4-56540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Günther, Tobias T1 - Condition assessment of concrete infrastructure with LIBS N2 - Due to the ageing of the infrastructure facilities, a reliable assessment of the condition of concrete structures is of great interest to plan timely and appropriate measures. In concrete structures, pittingcorrosion of the reinforcement is the predominant deterioration mechanism affecting serviceability and eventually structural performance. Determination of quantitative chloride ingress is not only necessary to obtain valuable information on the current condition of a structure, but the data obtained can also be used to predict future developments and the associated risks. An overview of the progress and the possibilities of the application of laser-induced breakdown spectroscopy for concrete analysis in daily civil engineering practice is given. High-resolution 2D measurements of drill cores to determine the penetration of harmful species into concrete is presented. Furthermore, the application of a mobile LIBS system in a parking garage is shown. The system consists of a diode-pumped low-energy laser (3 mJ, 1.5 ns, 100 Hz) and a compact NIR spectrometer. A scanner allows two-dimensional element mapping. Progress towards the establishment of LIBS in a leaflet for the analysis of chlorine ingress into concrete in civil engineering is presented. T2 - Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy 2021 CY - Gijón, Spain DA - 29.11.2021 KW - LIBS KW - Concrete KW - Chlorine KW - Civil engineering PY - 2021 AN - OPUS4-56536 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias T1 - Application of LIBS in civil engineering – status, trends and challenges N2 - The main application of LIBS in civil engineering is the detection of harmful ions in concrete, which can penetrate the component through the porous concrete structure. The advantages of LIBS over standard methods are the possibility of multi-element analysis, measurement speed, spatially resolved measurements, and minimal sample preparation. The spatially resolved measurements of LIBS allow the assessment of the heterogeneity of the concrete by measuring separately the chemical composition of the aggregates and the binder matrix. The latter is particularly relevant because the determined elemental distribution can be directly related to the binder matrix. This is not possible with standard methods, since the material is homogenized to powder during sample preparation stage and the determined concentration is thus related to the total mass. In addition to the use of LIBS for the specific analysis of individual harmful ions, LIBS can also be used to estimate the concrete composition and thus determine, for example, the type of cement used. Corresponding information are relevant for the estimation of the remaining service life and for the preparation of a maintenance concept. In recent years, LIBS has been increasingly used in civil engineering. Currently, however, it is primarily used in research institutions and only occasionally in building materials laboratories. Special commercial devices have also been developed, which greatly simplify the application due to the high degree of automation. Mobile LIBS systems allow on-site application. A central point, which limits the use of LIBS in the commercial sector, is the lack of norms and standards. Therefore, within the framework of a project funded by the German government, work has been carried out on the preparation of a leaflet on quantitative chlorine determination in concrete, which will be published this year. In interlaboratory comparisons the robustness and accuracy for the practical application was demonstrated. LIBS also has great potential in the recycling of construction waste in conjunction with hyperspectral sensors. This issue is currently being addressed in a national project. During the presentation, the state of the art of LIBS in civil engineering will be presented, next steps will be discussed, and future challenges will be outlined. T2 - XII international conference on laser induced breakdown spectroscopy (LIBS 2022) CY - Bari, Italy DA - 04.09.2022 KW - LIBS KW - Concrete KW - Chlorine KW - Civil engineering PY - 2022 AN - OPUS4-56535 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Völker, Tobias A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser Induced Breakdown Spectroscopy – A Tool for Imaging the Chemical Composition of Concrete N2 - One of the most common causes of damage is the ingress of harmful ions into the concrete, which can lead to deterioration processes and affect structural performance. Therefore, the increasingly aging infrastructure is regularly inspected to assess durability. Regular chemical analysis can be useful to determine the extent and evolution of ion ingress and to intervene in a timely manner. This could prove more economical than extensive repairs for major damage, particularly for critical infrastructure. In addition to already established elemental analysis techniques in civil engineering such as potentiometric titration or X-ray fluorescence analysis, laser-induced breakdown spectroscopy (LIBS) can provide further important complementary information and benefits. The possibilities of LIBS are demonstrated using the example of a drill core taken from a parking garage. T2 - 6th International Conference on Concrete Repair, Rehabilitation and Retrofitting CY - Kapstadt, South Africa DA - 03.10.2022 KW - LIBS KW - Concrete KW - Chlorine PY - 2022 UR - https://iccrrr2022.org/downloads SP - 126 EP - 127 AN - OPUS4-56062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Wilsch, Gerd A1 - Klewe, Tim A1 - Kruschwitz, Sabine T1 - Laser Induced Breakdown Spectroscopy A Tool for Imaging the Chemical Composition of Concrete N2 - One of the most common causes of damage is the ingress of harmful ions into the concrete, which can lead to deterioration processes and affect structural performance. Therefore, the increasingly aging infrastructure is regularly inspected to assess durability. Regular chemical analysis can be useful to determine the extent and evolution of ion ingress and to intervene in a timely manner. This could prove more economical than extensive repairs for major damage, particularly for critical infrastructure. In addition to already established elemental analysis techniques in civil engineering such as potentiometric titration or X-ray fluorescence analysis, laser-induced breakdown spectroscopy (LIBS) can provide further important complementary information and benefits. The possibilities of LIBS are demonstrated using the example of a drill core taken from a parking garage. T2 - 6th International Conference on Concrete Repair, Rehabilitation and Retrofitting CY - Cape Town, South Africa DA - 03.10.2022 KW - LIBS KW - Concrete KW - Cement KW - Chlorine PY - 2022 AN - OPUS4-56061 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schwarz, W. A1 - Wilsch, Gerd A1 - Katsumi, N. A1 - Ebell, Gino A1 - Völker, Tobias T1 - Ion distribution in concrete overlay, mapped by laser induced breakdown spectroscopy (LIBS), modified by an embedded zinc anode N2 - Galvanic corrosion protection by embedded zinc anodes is an accepted technique for the corrosion protection of reinforcing steel in concrete. Galvanic currents flow between the zinc anode and the steel reinforcement due to the potential difference that is in the range of a few hundred mV. The ion distribution was studied on two steel reinforced concrete specimens admixed with 3 wt.% chloride/wt. cement and galvanically protected by a surface applied EZ-anode. On both specimens, a zinc anode was embedded and glued to the concrete surface by a geo-polymer-based chloride-free binder. At one specimen, the EZ-anode was operated for 2,5 years, the EZ-anode at the other specimen was not electrically connected to the reinforcement, this specimen serves as a reference. Both specimens have been stored under identical conditions. The ion distribution between the anode (EZ-ANODE) and cathode (steel reinforcement) was studied by laser-induced breakdown spectroscopy (LIBS) after 7 months, 12 months, and 2,5 years. Results of the LIBS studies on the specimen with activated EZ-anode after 7 months, 12 months, and 2,5 years and of the reference specimen after 2,5 years are reported. Results show that diffusion of ions contributes to the changes in the ion distribution but migration, especially of chlorides towards the EZ-anode is significant despite the weak electric field – several hundred millivolts - generated by the galvanic current. Results show that chloride ions accumulate near the zinc-anode as in water-insoluble zinc-hydroxy chlorides - Simonkollite. T2 - ICCRRR 2022 CY - Capetown, South Africa KW - Corrosion KW - LIBS KW - Zinc KW - Anode PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-560576 DO - https://doi.org/10.1051/matecconf/202236404023 SN - 2261-236X VL - 364 SP - 1 EP - 7 PB - EDP Sciences CY - Les Ulis AN - OPUS4-56057 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schwarz, W. A1 - Wilsch, Gerd A1 - Katsumi, N. A1 - Ebell, Gino A1 - Völker, Tobias T1 - Ion distribution in concrete overlay, mapped by laser induced breakdown spectroscopy (LIBS), modified by an embedded zinc anode N2 - Galvanic corrosion protection by embedded zinc anodes is an accepted technique for the corrosion protection of reinforcing steel in concrete. Galvanic currents flow between the zinc anode and the steel reinforcement due to the potential difference that is in the range of a few hundred mV. The ion distribution was studied on two steel reinforced concrete specimens admixed with 3 wt.% chloride/wt. cement and galvanically protected by a surface applied EZ-anode. On both specimens, a zinc anode was embedded and glued to the concrete surface by a geo-polymer-based chloride-free binder. At one specimen, the EZ-anode was operated for 2,5 years, the EZ-anode at the other specimen was not electrically connected to the reinforcement, this specimen serves as a reference. Both specimens have been stored under identical conditions. The ion distribution between the anode (EZ-anode) and cathode (steel reinforcement) was studied by laser-induced breakdown spectroscopy (LIBS) after 7 months, 12 months, and 2,5 years. Results of the LIBS studies on the specimen with activated EZ-anode after 7 months, 12 months, and 2,5 years and of the reference specimen after 2,5 years are reported. Results show that diffusion of ions contributes to the changes in the ion distribution but migration, especially of chlorides towards the EZ-anode is significant despite the weak electric field – several hundred millivolts - generated by the galvanic current. Results show that chloride ions accumulate near the zinc-anode as in water-insoluble zinc-hydroxy chlorides - Simonkolleit. T2 - ICCRRR 2022 CY - Capetown, South Africa DA - 03.10.2022 KW - Korrosion KW - Corrosion KW - LIBS KW - Zinc PY - 2022 AN - OPUS4-55948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Klewe, Tim A1 - Wilsch, Gerd A1 - Kruschwitz, Sabine T1 - Application of LIBS to identify construction and demolition waste for circular economy N2 - Responsible treatment of the environment and resources is a key element of sustainability. The building and construction industry is one of the largest consumers of natural resources. Consequently, there is a particular need for regulations and technologies that help to create closed material cycles. From the technological point of view, such efforts are complicated by the growing material diversity and the amount of composites contained in present and future construction and demolition waste (CDW). Nowadays, simple but proven techniques like manual sorting are mainly used. However, this practice not only poses health risks and dangers to the staff performing the work, but also relies on merely obvious, visually striking differences. Automated, sensor-based sorting of these building materials could complement or replace this practice to improve processing speed, recycling rates, sorting quality, and prevailing health conditions. The preliminary results for the identification of a wide variety of building materials with LIBS are presented. T2 - XII Laser Induced Breakdown Spectroscopy (LIBS 2022) CY - Bari, Italy DA - 04.09.2022 KW - LIBS KW - Construction and demolition waste KW - Circular economy PY - 2022 AN - OPUS4-55679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Wilsch, Gerd A1 - Gornushkin, Igor B. A1 - Millar, S. A1 - Licht, M. T1 - Interlaboratory comparison for quantitative chlorine analysis in cement pastes with LIBS N2 - Concrete structures often show severe damage during their lifetime. One such damage is pitting corrosion of the steel reinforcement caused by chloride ingress into the porous concrete structure. Laser-induced breakdown spectroscopy (LIBS) is a promising method in civil engineering, which is used for detection of chlorine in concrete structures in addition to conventional methods of wet chemistry. To assess LIBS as a trustful analytical technique, its accuracy and robustness is carefully tested. The presentation will outline the results of the interlaboratory comparison of chlorine quantification in cement paste samples, which was carried out by 12 laboratories in 10 countries. Two sets of samples with chloride content ranging from 0.06-1.95 wt.% in the training set and 0.23-1.51 wt.% in the test sample set (“unknowns”), with additional variations in the type of cement and chlorine source (salt type) were sent to the laboratories. The overall result demonstrates that LIBS is suitable for the quantification of the investigated sample compositions: average relative bias was mostly below 15 %. Considering that the laboratories did not receive instructions on how to perform the analysis or how to process the data, the results can be evaluated as a true status quo of the LIBS technique for this type of analysis. T2 - XII Laser Induced Breakdown Spectroscopy (LIBS 2022) CY - Bari, Italy DA - 04.09.2022 KW - LIBS KW - Chlorine KW - Cement pastes KW - Interlaboratory comparison PY - 2022 AN - OPUS4-55680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gottlieb, C. A1 - Heilmann, D. A1 - Völker, Tobias A1 - Günther, Tobias A1 - Wilsch, Gerd A1 - Bohling, C. T1 - Optimization of LIBS experiments using Design of experiment (DoE) N2 - To conduct a reliable, repeatable and accurate LIBS analysis, the optimization of the experimental setup is an important task. Hardware parameters of lasers and spectrometers used in the setup as well as additionally required components such as optics or process gas pipes must be carefully aligned and adjusted because factors like (i) focal conditions of the optics, (ii) alignment of the sample, (iii) process purge gas (types, flow rate) or (iv) measurement settings (integration time, accumulation of pulses) have a big impact on the signal quality. Therefore, in most cases the effect of different factors is evaluated empirically due to changing one factor at a time while keeping the overall configuration the same. In the end, the optimal configuration is selected based on the best parameters for each influencing factor. During optimization, a configuration of the experimental setup is aimed at, which allows e.g. the highest signal intensity or the lowest variation. In most cases, cross-correlation, interference and interaction among the various factors are not considered. For this reason, the possibilities of using Design of Experiment (DoE) to optimize a LIBS experiment will be shown and advantages of (i) reduction of testing plans using a feature space, (ii) identifying and considering cross-correlations and interactions, (iii) evaluating individual impacts on the measurement (e.g. contour and surface plots) as well as (iv) multivariate models for prediction of impacts will be presented. T2 - 11th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy (EMSLIBS) CY - Online meeting DA - 29.11.2021 KW - LIBS KW - Chlorine KW - DoE PY - 2021 AN - OPUS4-53899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Tobias A1 - Millar, S. A1 - Licht, M. A1 - Wilsch, Gerd T1 - Round robin test for chloride analysis in cement pastes with LIBS N2 - In civil engineering, clear regulations and standards, such as the European standard DIN EN 206 apply to ensure that the existing infrastructure is sufficiently resistant to a wide range of exposure conditions. Despite these regulations, in practice concrete structures often show severe damage during their service life. One of these damages is pitting corrosion of the reinforcement, which can be caused by chloride ingress into the structure. Therefore, determining the distribution and depth of chloride ingress is important in predicting the service life. LIBS provides an alternative method to conventional wet chemistry in civil engineering. Despite many advantages, the use of LIBS has been severely limited due to a lack of regulations. Together with project partners from research and industry, we are currently working on a leaflet that will regulate chloride analysis in civil engineering using LIBS. This year, an international round robin test was organized to evaluate the performance of LIBS for chloride analysis in cement pastes. No specifications were given for the experimental LIBS setup and data evaluation. The preliminary results are presented. T2 - 11th Euro-Mediterranean Symposium on Laser-Induced Breakdown Spectroscopy (EMSLIBS) CY - Online meeting DA - 29.11.2021 KW - LIBS KW - Cement KW - Chloride KW - Round robin KW - Interlaboratory comparison PY - 2021 AN - OPUS4-53898 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gottlieb, Cassian A1 - Bohling, Christian A1 - Wilsch, Gerd T1 - New possibilities for concrete analysis 4.0 with the Laser-Induced Breakdown Spectroscopy (LIBS) N2 - In civil engineering the damage assessment of concrete infrastructures is an important task to monitor and ensure the estimated life-time. The aging of concrete is caused by different damage processes like the chloride induced pitting corrosion of the reinforcement. The penetration depth and the concentration of harmful species are crucial factors in the damage assessment. As a highly cost and time-consuming standard procedure, the analysis of concrete drill cores or drilling by wet-chemistry is widely used. This method provides element concentration to the total mass as aggregates and binder are homogenized. In order to provide a method that is capable to detect the element concentration regarding the cement content only, the laser-induced breakdown spectroscopy (LIBS) will be presented. The LIBS method uses a focused pulsed laser on the sample surface to ablate material. The high-power density and the laser-material interaction causes a laser-induced plasma that emits elemental and molecular line emission due to energy transition of the excited species in the plasma during the cooling phase. As each element provides element-specific line emission, it is in principle possible to detect any element on the periodic table (spectroscopic fingerprint) with one laser shot. In combination with a translation stage the sample under investigation can be spatially resolved using a scan raster with a resolution up to 100 µm (element mapping). Due to the high spatial resolution, the element distribution and the heterogeneity of the concrete can be evaluated. By using chemometrics the non-relevant aggregates can be excluded from the data set and the element concentration can be quantified and referred to a specific solid phase like the binding matrix (cement) only. In order to analyze transport processes like diffusion and migration the twodimensional element distributions can provide deep insight into the transport through the pore space and local enrichments of elements. As LIBS is a multi-elemental method it is also possible to compare the ingress and transport process of different elements like Cl, Na, K, S, C, and Li simultaneously and evaluate cross-correlations between the different ions. Furthermore, the element mapping allows to visualize the transport along cracks. This work will show the state of the art in terms of hardware and software for an automated LIBS system as well as different application for a concrete analysis 4.0. Focus will be the application of LIBS for a fast concrete analysis. T2 - SMAR 2019 CY - Potsdam, Germany DA - 27.08.2019 KW - Damage KW - LIBS KW - Concrete KW - Mapping KW - Chlorine PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517282 UR - https://www.ndt.net/?id=24963 SN - 1435-4934 VL - 25 IS - 1 SP - 1 EP - 8 PB - NDT.net CY - Kirchwald AN - OPUS4-51728 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Günther, Tobias A1 - Völker, Tobias T1 - Mobile LIBS system for evaluation of concrete structures on site N2 - Features and application of a mobile LIBS system for evaluation of concrete structures on-site. T2 - EMSLIBS 2019 CY - Brno, Czech Republic DA - 08.09.2019 KW - On-site KW - LIBS KW - Concrete KW - Mapping KW - Evaluation PY - 2019 AN - OPUS4-51711 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wilsch, Gerd A1 - Günther, Tobias A1 - Völker, Tobias T1 - LIBS for the analysis of concrete N2 - Special features and examples of using LIBS on concrete. T2 - Workshop on tandem LIBS/LA-ICP-MS CY - Berlin, Germany DA - 18.11.2019 KW - Mobile system KW - LIBS KW - Concrete KW - Damage KW - Chloride KW - Sulphate KW - Mapping PY - 2019 AN - OPUS4-51710 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -