TY - JOUR A1 - Sieg, Holger A1 - Schaar, Caroline A1 - Fouquet, Nicole A1 - Böhmert, Linda A1 - Thünemann, Andreas A1 - Braeuning, Albert T1 - Particulate iron oxide food colorants (E 172) during artificial digestion and their uptake and impact on intestinal cells N2 - Iron oxide of various structures is frequently used as food colorant (E 172). The spectrum of colors ranges from yellow over orange, red, and brown to black, depending on the chemical structure of the material. E 172 is mostly sold as solid powder. Recent studies have demonstrated the presence of nanoscaled particles in E 172 samples, often to a very high extent. This makes it necessary to investigate the fate of these particles after oral uptake. In this study, 7 differently structured commercially available E 172 food colorants (2 x Yellow FeO(OH), 2 x Red Fe2O3, 1 x Orange Fe2O3 + FeO(OH) and 2 x Black Fe3O4) were investigated for particle dissolution, ion release, cellular uptake, crossing of the intestinal barrier and toxicological impact on intestinal cells. Dissolution was analyzed in water, cell culture medium and artificial digestion fluids. Small-angle X-ray scattering (SAXS) was employed for determination of the specific surface area of the colorants in the digestion fluids. Cellular uptake, transport and toxicological effects were studied using human differentiated Caco-2 cells as an in vitro model of the intestinal barrier. For all materials, a strong interaction with the intestinal cells was observed, albeit there was only a limited dissolution, and no toxic in vitro effects on human cells were recorded. KW - Toxicology KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593935 DO - https://doi.org/10.1016/j.tiv.2024.105772 VL - 96 SP - 1 EP - 12 PB - Elsevier BV AN - OPUS4-59393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hildebrandt, Jana A1 - Taubert, Andreas A1 - Thünemann, Andreas T1 - Synthesis and Characterization of Ultra‐Small Gold Nanoparticles in the Ionic Liquid 1‐Ethyl‐3‐methylimidazolium Dicyanamide, [Emim][DCA] N2 - AbstractWe report on gold clusters with around 62 gold atoms and a diameter of 1.15±0.10 nm. Dispersions of the clusters are long‐term stable for two years at ambient conditions. The synthesis was performed by mixing tetrachloroauric acid (HAuCl4 ⋅ 3 H2O) with the ionic liquid 1‐ethyl‐3‐methylimidazolium dicyanamide ([Emim][DCA]) at temperatures of 20 to 80 °C. Characterization was performed with small‐angle X‐ray scattering (SAXS), UV‐Vis spectroscopy, and MALDI‐TOF mass spectrometry. A three‐stage model is proposed for the formation of the clusters, in which cluster growth from gold nuclei takes place according to the Lifshitz‐Slyozov‐Wagner (LSW) model followed by oriented attachment to form colloidal stable clusters. KW - Reference materials KW - SAXS KW - Gold KW - Nanoparticle KW - Small-angle X-ray scattering KW - Ionic liquid PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588203 DO - https://doi.org/10.1002/open.202300106 SN - 2191-1363 VL - 44 SP - 1 EP - 19 PB - Wiley AN - OPUS4-58820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Navarro, L. A1 - Thünemann, Andreas A1 - Yokosawa, T. A1 - Spiecker, E. A1 - Klinger, D. T1 - Regioselective Seeded Polymerization in Block Copolymer Nanoparticles: Post-Assembly Control of Colloidal Features N2 - Post-assembly modifications are efficient tools to adjust colloidal features of block copolymer (BCP) particles. However, existing methods often address particle shape, morphology, and chemical functionality individually. For simultaneous control, we transferred the concept of seeded polymerization to phase separated BCP particles. Key to our approach is the regioselective polymerization of (functional) monomers inside specific BCP domains. This was demonstrated in striped PS-b-P2VP ellipsoids. Here, polymerization of styrene preferably occurs in PS domains and increases PS lamellar thickness up to 5-fold. The resulting asymmetric lamellar morphology also changes the particle shape, i.e., increases the aspect ratio. Using 4-vinylbenzyl azide as co-monomer, azides as chemical functionalities can be added selectively to the PS domains. Overall, our simple and versatile method gives access to various multifunctional BCP colloids from a single batch of pre-formed particles. KW - Small-angle X-ray scattering KW - SAXS KW - Nanostructure KW - Polymer KW - Nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-557246 DO - https://doi.org/10.1002/anie.202208084 SN - 1433-7851 VL - 61 IS - 35 SP - 1 EP - 11 PB - Wiley CY - Weinheim AN - OPUS4-55724 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Schmidt, R. F. A1 - Sahoo, A. K. A1 - tom Dieck, T. A1 - Hohmann, T. A1 - Schade, B. A1 - Brademann-Jock, Kerstin A1 - Thünemann, Andreas A1 - Netz, R. R. A1 - Gradzielski, M. A1 - Koksch, B. T1 - Rational design of amphiphilic fluorinated peptides: evaluation of self-assembly properties and hydrogel formation N2 - Advanced peptide-based nanomaterials composed of self-assembling peptides (SAPs) are of emerging interest in pharmaceutical and biomedical applications. The introduction of fluorine into peptides, in fact, offers unique opportunities to tune their biophysical properties and intermolecular interactions. In particular, the degree of fluorination plays a crucial role in peptide engineering as it can be used to control the characteristics of fluorine-specific interactions and, thus, peptide conformation and self-assembly. Here, we designed and explored a series of amphipathic peptides by incorporating the fluorinated amino acids (2S)-4-monofluoroethylglycine (MfeGly), (2S)-4,4-difluoroethylglycine (DfeGly) and (2S)-4,4,4-trifluoroethylglycine (TfeGly) as hydrophobic components. This approach enabled studying the impact of fluorination on secondary structure formation and peptide self-assembly on a systematic basis. We show that the interplay between polarity and hydrophobicity, both induced differentially by varying degrees of side chain fluorination, does affect peptide folding significantly. A greater degree of fluorination promotes peptide fibrillation and subsequent formation of physical hydrogels in physiological conditions. Molecular simulations revealed the key role played by electrostatically driven intra-chain and inter-chain contact pairs that are modulated by side chain fluorination and give insights into the different self-organization behaviour of selected peptides. Our study provides a systematic report about the distinct features of fluorinated oligomeric peptides with potential applications as peptide-based biomaterials. KW - Small-angle X-ray scattering KW - SAXS KW - Amyloid PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553504 DO - https://doi.org/10.1039/D2NR01648F SN - 2040-3364 VL - 14 IS - 28 SP - 10176 EP - 10189 PB - Royal Society of Chemistry AN - OPUS4-55350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Rybak, Tina A1 - Thünemann, Andreas T1 - Microwave-Assisted Synthesis of ZnO Nanoparticles: Phase Transfer to Water N2 - Herein, a simple one-pot procedure is reported to obtain aqueous zinc oxide (ZnO) nanoparticle dispersions from ZnO nanoparticles dispersed in cyclohexane. In the process, polyoxyethylene (20) sorbitan monooleate (polysorbate 80, Tween 80) functions as a phase transfer agent and colloidal stabilizer. The particles grow in a defined manner during the transfer, presumably via coalescence. The final particle radii are tuneable in the range from 2.3 ± 0.1 nm to 5.7 ± 0.1 nm depending on the incubation time of the dispersion at 90 °C. Small-angle X-ray scattering is employed to determine the particle radius distributions before and after phase transfer. The larger ZnO particle radii are associated with a redshift of the optical bandgap and luminescence emission, as expected for semiconductor nanoparticles. The particles presented here exhibit a relative size distribution width of 20%, rendering them attractive for applications in, e.g., biology or catalysis. The latter application is demonstrated at the photocatalytic degradation of methylene blue dye. KW - SAXS KW - Small-angle X-ray scattering KW - nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-551502 DO - https://doi.org/10.1002/adem.202101276 VL - 24 IS - 6 SP - 1 EP - 7 PB - Wiley AN - OPUS4-55150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Paul, M. B. A1 - Fahrenson, C. A1 - Givelet, L. A1 - Herrmann, T. A1 - Loescher, K. A1 - Böhmert, L. A1 - Thünemann, Andreas A1 - Braeuning, A. A1 - Sieg, H. T1 - Beyond microplastics ‑ investigation on health impacts of submicron and nanoplastic particles after oral uptake in vitro N2 - The continuously increasing use of plastics is supposed to result in a rising exposure of MNPs to humans. Available data on human health risks of microplastics after oral uptake increased immensely in the past years and indicates very likely only low risks after oral consumption. Concerning nanoplastics, uptake, transport and potential adverse effects after oral uptake are less well understood. This study aims to investigate differences between microplastic particles and particles in the submicron- and nanoscaled size derived from food-relevant polymers with a particle size range consistent with higher potential for cellular uptake, fate, and effects when applied to human intestinal and liver cells. This work includes the development of cellular and subcellular detection methods for synthetic polymeric particles in the micro- and nanometer-range, using Scanning Electron Microscopy, Small-Angle X-ray and Dynamic Light Scattering methods, Asymmetric Flow Field Flow Fractionation, octanol-water fractionation, fluorescence microscopy and flow cytometry. Polylactic acid (250 nm and 2 μm (polydisperse)), melamine formaldehyde (366 nm) and polymethylmethacrylate (25 nm) were thoroughly characterized. The submicro- and nanoplastic test particles showed an increased uptake and transport quantity through intestinal cells. Both types of particles resulted in observed differences of uptake behavior, most likely influenced by different lipophilicity, which varied between the polymeric test materials. Toxic effects were detected after 24 h only in overload situations for the particles in the submicrometer range. This study provides further evidence for gastrointestinal uptake of submicro- and nanoplastics and points towards differences regarding bioavailability between microplastics and smaller plastic particles that may result following the ingestion of contaminated food and beverages. Furthermore, the results reinforce the importance for studying nanoplastics of different materials of varying size, surface properties, polymer composition and hydrophobicity. KW - Small-angle X-ray scattering KW - SAXS KW - nanoparticle PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550741 DO - https://doi.org/10.1186/s43591-022-00036-0 VL - 2 SP - 1 EP - 19 PB - Springer Nature AN - OPUS4-55074 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Navarro, L. A1 - Thünemann, Andreas A1 - Klinger, D. T1 - Solvent Annealing of Striped Ellipsoidal Block Copolymer Particles: Reversible Control over Lamellae Asymmetry, Aspect Ratio, and Particle Surface N2 - Solvent annealing is a versatile tool to adjust the shape and morphology of block copolymer (BCP) particles. During this process, polar solvents are often used for block-selective swelling. However, such water-miscible solvents can induce (partial) solubilization of one block in the surrounding aqueous medium, thus, causing complex structural variations and even particle disassembly. To reduce the complexity in morphology control, we focused on toluene as a nonpolar polystyrene-selective solvent for the annealing of striped polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) ellipsoids. The selective stretching of PS chains produces unique asymmetric lamellae structures, which translate to an increase in the particle aspect ratio after toluene evaporation. Complete reversibility is achieved by changing to chloroform as a nonselective solvent. Moreover, surfactants can be used to tune block-selective wetting of the particle surface during the annealing; for example, a PS shell can protect the internal lamellae structure from disassembly. Overall, this versatile postassembly process enables the tailoring of the structural features of striped colloidal ellipsoids by only using commercial BCPs and solvents. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Polymer PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543731 DO - https://doi.org/10.1021/acsmacrolett.1c00665 VL - 11 IS - 3 SP - 319 EP - 335 PB - American Chemical Society AN - OPUS4-54373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Klusmann, L. A1 - Ellermann, A. L. A1 - Böhmert, L. A1 - Thünemann, Andreas A1 - Braeuning, A. T1 - Counterions determine uptake and effects of aluminum in human intestinal and liver cells N2 - Aluminum (Al) is highly abundant in the biosphere and can occur in different physico-chemical states. It is present in human food and undergoes transitions between dissolved and particulate species during the passage of the gastrointestinal tract. Moreover, in a complex matrix such as food different inorganic and organic counterions can affect the chemical behavior of Al following oral uptake. In this work, the effects of different counterions, namely chloride, citrate, sulfate, lactate and acetylacetonate, on Al uptake and toxicity in the human intestine are studied. The respective Al salts showed different dissolution behavior in biological media and formed nanoscaled particles correlating in reverse with the amount of their dissolved fraction. The passage through the intestinal barrier was studied using a Caco-2 Transwell® system, showing counterion-dependent variance in cellular uptake and transport. In addition, Al toxicity was investigated using Al species (Al3+, metallic Al0 and oxidic γAl2O3 nanoparticles) and counterions individually or in mixtures on Caco-2 and HepG2 cells. The strongest toxicity was observed using a combination of Al species, depending on solubility, and the lipophilic counterion acetylacetonate. Notably, only the combination of both led to toxicity, while both substances individually did not show toxic effects. A toxification of previously non-toxic Al-species by the presence of acetylacetonate is shown here for the first time. The dependency on the concentration of free Al ions was demonstrated using sodium hydrogen phosphate, which was able to counteract the toxic effects by complexing free Al ions. These findings, using Al salts as an example for a common food contaminant, underline the importance of a consideration of the chemical properties of human nutrition, especially dissolution and hydrophobicity, which can significantly influence the cellular uptake and effects of xenobiotic substances. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2022 DO - https://doi.org/10.1016/j.tiv.2021.105295 VL - 79 SP - 1 EP - 7 PB - Elsevier AN - OPUS4-54110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fortes Martin, R. A1 - Thünemann, Andreas A1 - Stockmann, Jörg M. A1 - Radnik, Jörg A1 - Koetz, J. T1 - From Nanoparticle Heteroclusters to Filament Networks by Self-Assembly at the Water–Oil Interface of Reverse Microemulsions N2 - Surface self-assembly of spherical nanoparticles of sizes below 10 nm into hierarchical heterostructures is under arising development despite the inherent difficulties of obtaining complex ordering patterns on a larger scale. Due to template-mediated interactions between oil-dispersible superparamagnetic nanoparticles (MNPs) and polyethylenimine-stabilized gold nanoparticles (Au(PEI)NPs) at the water–oil interface of microemulsions, complex nanostructured films can be formed. Characterization of the reverse microemulsion phase by UV–vis absorption revealed the formation of heteroclusters from Winsor type II phases (WPII) using Aerosol-OT (AOT) as the surfactant. SAXS measurements verify the mechanism of initial nanoparticle clustering in defined dimensions. XPS suggested an influence of AOT at the MNP surface. Further, cryo-SEM and TEM visualization demonstrated the elongation of the reverse microemulsions into cylindrical, wormlike structures, which subsequently build up larger nanoparticle superstructure arrangements. Such WPII phases are thus proven to be a new form of soft template, mediating the self-assembly of different nanoparticles in hierarchical network-like filaments over a substrate during solvent evaporation. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nano structure PY - 2021 DO - https://doi.org/10.1021/acs.langmuir.1c01348 VL - 37 IS - 29 SP - 8876 EP - 8885 PB - American Chemical Society AN - OPUS4-53034 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ihlenburg, R. B. J. A1 - Mai, T. A1 - Thünemann, Andreas A1 - Baerenwald, R. A1 - Saalwächter, K. A1 - Koetz, J. A1 - Taubert, A. T1 - Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure N2 - Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N′,N′-tetramethyl-N,N′-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers. KW - Small-angle X-ray scattering KW - SAXS KW - Gel PY - 2021 DO - https://doi.org/10.1021/acs.jpcb.0c10601 SN - 1520-6106 VL - 125 IS - 13 SP - 3398 EP - 3408 PB - American Chemical Society AN - OPUS4-52403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chowdhary, S. A1 - Moschner, J. A1 - Mikolajczak, D. J. A1 - Becker, M. A1 - Thünemann, Andreas A1 - Kästner, Claudia A1 - Klemczak, D. A1 - Stegemann, A.-K. A1 - Böttcher, C. A1 - Metrangolo, P. A1 - Netz, R. R. A1 - Koksch, B. T1 - The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation N2 - The hexapeptide hIAPP22–27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild‐type hIAPP′s toxicity to β‐cell death. In amyloid research, the role of hydrophobic and aromatic‐aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic‐aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS) to study the impact of side‐chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self‐assembly process. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nanostructure KW - Peptide KW - Amyloid PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518632 DO - https://doi.org/10.1002/cbic.202000373 VL - 21 IS - 24 SP - 3544 EP - 3554 PB - Wiley CY - Weinheim AN - OPUS4-51863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voss, L. A1 - Hsiao, I-L. A1 - Ebisch, Maximilian A1 - Vidmar, J. A1 - Dreiack, N. A1 - Böhmert, L. A1 - Stock, V. A1 - Braeuning, A. A1 - Loeschner, K. A1 - Laux, P. A1 - Thünemann, Andreas A1 - Lampen, A. A1 - Sieg, H. T1 - The presence of iron oxide nanoparticles in the food pigment E172 N2 - Iron oxides used as food colorants are listed in the European Union with the number E172. However, there are no specifications concerning the fraction of nanoparticles in these pigments. Here, seven E172 products were thoroughly characterized. Samples of all colors were analyzed with a Broad spectrum of methods to assess their physico-chemical properties. Small-Angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), Transmission Electron Microscopy (TEM), zeta-potential, Inductively Coupled Plasma-Mass Spectrometry (ICP-MS), X-ray diffraction (XRD), Brunauer-Emmett-Teller analysis (BET), Asymmetric Flow Field-Flow Fractionation (AF4) and in vitro cell viability measurements were used. Nanoparticles were detected in all E172 samples by TEM or SAXS measurements. Quantitative results from both methods were comparable. Five pigments were evaluated by TEM, of which four had a size median below 100 nm, while SAXS showed a size median below 100 nm for six evaluated pigments. Therefore, consumers May be exposed to iron oxide nanoparticles through the consumption of food pigments. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1016/j.foodchem.2020.127000 VL - 327 SP - 127000 PB - Elsevier Ltd. AN - OPUS4-50810 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Krause, B.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Laux, P. A1 - Braeuning, A. A1 - Fessard, V. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Cellular Effects of In Vitro-Digested Aluminum Nanomaterials on Human Intestinal Cells N2 - Aluminum (Al) can be taken up from food, packaging, or the environment and thus reaches the human gastrointestinal tract. Its toxic potential after oral uptake is still discussed. The fate of different solid and ionic Al species during the passage through the digestive tract is the focus of this research, as well as the cellular effects caused by these different Al species. The present study combines the physicochemical processing of three recently studied Al species (metallic Al0, mineral Al2O3, and soluble AlCl3) in artificial digestion fluids with in vitro cell systems for the human intestinal barrier. Inductively coupled plasma mass spectrometry (ICP-MS) and small-angle X-ray scattering (SAXS) methods were used to characterize the Al species in the artificial digestion fluids and in cell culture medium for proliferating and differentiated intestinal Caco-2 cells. Cytotoxicity testing and cellular impedance measurements were applied to address the effects of digested Al species on cell viability and cell proliferation. Microarray-based transcriptome analyses and quantitative real-time PCR were conducted to obtain a deeper insight into cellular mechanisms of action and generated indications for cellular oxidative stress and an influence on xenobiotic metabolism, connected with alterations in associated signaling pathways. These cellular responses, which were predominantly caused by formerly ionic Al species and only at very high concentrations, were not impacted by artificial digestion. A two-directional conversion of Al between ionic species and solid particles occurred throughout all segments of the gastrointestinal tract, as evidenced by the presence of nanoscaled particles. Nevertheless, this presence did not increase the toxicity of the respective Al species. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02354 VL - 3 IS - 3 SP - 2246 EP - 2256 PB - American Chemical Society AN - OPUS4-50632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, F. A1 - Sarhan, R. M. A1 - Schmitt, C. N. Z. A1 - Thünemann, Andreas A1 - Prietzel, C. A1 - Bargheer, M. A1 - Koetz, J. T1 - Gold Nanotriangles with Crumble Topping and their Influence on Catalysis and Surface‐Enhanced Raman Spectroscopy N2 - By adding hyaluronic acid (HA) to dioctyl sodium sulfosuccinate (AOT)‐stabilized gold nanotriangles (AuNTs) with an average thickness of 7.5±1 nm and an edge length of about 175±17 nm, the AOT bilayer is replaced by a polymeric HA‐layer leading to biocompatible nanoplatelets. The subsequent reduction process of tetrachloroauric acid in the HA‐shell surrounding the AuNTs leads to the formation of spherical gold nanoparticles on the platelet surface. With increasing tetrachloroauric acid concentration, the decoration with gold nanoparticles can be tuned. SAXS measurements reveal an increase of the platelet thickness up to around 14.5 nm, twice the initial value of bare AuNTs. HRTEM micrographs show welding phenomena between densely packed particles on the platelet surface, leading to a crumble formation while preserving the original crystal structure. Crumbles crystallized on top of the platelets enhance the Raman signal by a factor of around 20, and intensify the plasmon‐driven dimerization of 4‐nitrothiophenol (4‐NTP) to 4,4′‐dimercaptoazobenzene in a yield of up to 50 %. The resulting crumbled nanotriangles, with a biopolymer shell and the absorption maximum in the second window for in vivo imaging, are promising candidates for biomedical sensing. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle KW - Gold PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-503977 DO - https://doi.org/10.1002/cplu.201900745 VL - 85 IS - 3 SP - 519 EP - 526 PB - Wiley-VCH Verlag CY - Weinheim AN - OPUS4-50397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - A look inside nanoparticles N2 - Small-angle scattering is the method of choice when it comes to obtaining information about the interior of nanoparticles. The aim is to make nanotechnology safer. While the use of small-angle neutron scattering (SANS) is limited to a few instruments in the world, small-angle X-ray scattering (SAXS) is widely accessible, with an upward trend. The example of core-shell particles shows how simple their analysis is with data from an Anton Paar laboratory system. Here, SAXS is a central tool for the development of new reference materials based on poly(methyl) acrylate-PVDF core-shell particles. The dimensions of the cores and shells can be precisely determined. A detailed analysis makes it possible to show that the cores contain fluorinated and nonfluorinated polymers, whereas the shell consist only of PVDF. This core-shell particles with a diameter around 40 nm show a significantly higher PVDF beta phase content than the PVDF homopolymer when using an emulsion polymerization technique. This finding is of importance with respect to applications in electroactive devices. T2 - SAXS excites: International SAXS Symposium 2019 CY - Graz, Austria DA - 24.09.2019 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoplastics PY - 2019 AN - OPUS4-49126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - The Single Chain Architecture of (Bio)Polymers in Contact with Nanoplastics N2 - In contrast to microplastics, little is known about nanoplastics (1 to 100 nm). In order to make the dectecability of nanoplasics more reliable, we started to develop nanoplastic reference materials. This project also aims to anser the question of how the single chain conformation of bio(polymers) changes in contact with nanoplastics. Small-angle X-ray and neutron scattering methods are suitable methods for studing this topic. Recently the soft and hard interactions between polystyrene nanoplasics and human serum albumin corona was investigated with small-angle neutron scattering. Here we concentrate on small-angle X-ray scattering as our favorite method to study how (bio)polymers change their conformation in contact with nanoplastics. The scattering of bovine serum albumin in its native state can be detected easily. The scattering pattern of this biopolymer changes dramatically when its globular stucture changes to a coil structure. Modeling of chain conformations and the calculation of the scattering pattern is relatively easy to perform. Numerous model calculations will be provided to predict the changes of conformation of single bio(polymer) chains when in conatact with nanoplastics. These predictions will be compared with recent experimenal results from in situ measurments of bio(polymers) in contact with nanoplastics. The impact of temperature, polymer concentration and salt on the single-chain conformation changes will be discussed. T2 - PolyDays 2019 CY - Berlin, Germany DA - 11.09.2019 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Protein KW - Nanoplastics PY - 2019 AN - OPUS4-48959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Kinetic monitoring of glutathione-induced silver nanoparticle disintegration N2 - We report on etching of polyacrylic acid-stabilised silver nanoparticles in the presence of glutathione (GSH). The initial particles with a radius of 3.2 nm and consisting of ∼8100 silver atoms dissolve in a two-step reaction mechanism while in parallel smaller silver particles with a radius of 0.65 nm and consisting of 60 to 70 silver atoms were formed. The kinetics of the etching of the initial particles, accompanied by formation of smaller silver particles was interpreted based on in situ, time-resolved small-angle X-ray scattering (SAXS) experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Silver nanoparticles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452464 DO - https://doi.org/10.1039/c8nr02369g SN - 2040-3372 VL - 10 IS - 24 SP - 11485 EP - 11490 PB - The Royal Society of Chemistry AN - OPUS4-45246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Böhmert, Linda A1 - Braeuning, Albert A1 - Lampen, Alfonso A1 - Thünemann, Andreas T1 - Fate of fluorescence labels - Their adsorption and desorption kinetics to silver nanoparticles N2 - Silver nanoparticles are among the most widely used and produced nanoparticles. Because of their frequent application in consumer products, the assessment of their toxicological potential has seen a renewed importance. A Major difficulty is the traceability of nanoparticles in in vitro and in vivo experiments. Even if the particles are labeled, for example, by a fluorescent marker, the dynamic exchange of ligands often prohibits their spatial localization. Our study provides an insight into the adsorption and desorption kinetics of two different fluorescent labels on silver nanoparticles with a core radius of 3 nm by dynamic light scattering, small-angle X-ray scattering, and fluorescence spectroscopy. We used BSA-FITC and tyrosine as examples for common fluorescent ligands. It is shown that the adsorption of BSA-FITC takes at least 3 days, whereas tyrosine adsorbs immediately. The quantitative amount of stabilizer on the particle surface was determined by fluorescence spectroscopy and revealed that the particles are stabilized by a monolayer of BSA-FITC (corresponding to 20 ± 9 molecules), whereas tyrosine forms a multilayered structure consisting of 15900 ± 200 molecules. Desorption experiments show that the BSA-FITC-stabilized particles are ideally suited for application in in vitro and in vivo experiments because the ligand desorption takes several days. Depending on the BSA concentration in the particles surroundings, the rate constant is k = 0.2 per day or lower when applying first order kinetics, that is, 50% of the BSAFITC molecules are released from the particle’s surface within 3.4 days. For illustration, we provide a first application of the fluorescence-labeled particles in an uptake study with two different commonly used cell lines, the human liver cell model HepG2 and the human intestinal cell model of differentiated Caco-2 cells. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Silver nanoparticles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452166 DO - https://doi.org/10.1021/acs.langmuir.8b01305 SN - 1520-5827 SN - 0743-7463 VL - 34 IS - 24 SP - 7153 EP - 7160 PB - American Chemical Society AN - OPUS4-45216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thünemann, Andreas T1 - Challenges of synthesis and analysis of core-shell nanoparticles for reference materials N2 - Core-shell nanoparticles are widespread in nature, industrial applications and nanotechnology research. Facile ways of modern synthesis will be discussed and possibilities to reveal their structures with small-angle X-ray scattering (SAXS). A recent review on using block copolymer templates as one of the most reliable routes for tuning size and shape of nanoparticles is provided by Li et al.1 Ferritin and apoferritin are archetypical examples for protein-based core-shell nanoparticles. Their structures are easily accessed by synchrotron SAXS2 but also with commercial instruments and allow fast performance tests.3 SASfit4 is a suitable program tool based on classical curve fitting and McSAS5 is a complementary program based on a Monte Carlo technique. Detailed refinements of SAXS data evaluation are on the way for better data analysis.6 A sub nanometer resolution is state-of-the-art for quantification of the size distribution of polyacrylic acid stabilized silver nanoparticles.3 Such particles are useful in catalysis.7 It was observed that the catalytic activity can be tuned easily by varying the shell material of the particles. T2 - NanoWorkshop 2018 (Workshop on reference nanomaterials, current situation and needs: development, measurement, standardization) CY - Berlin, Germany DA - 14.05.2018 KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2018 AN - OPUS4-44903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, Ferenc A1 - Moreno, Silvia A1 - Thünemann, Andreas A1 - Temme, Achim A1 - Appelhans, Dietmar A1 - Koetz, Joachim T1 - Toxicological investigations of “naked” and polymer-entrapped AOT-based gold nanotriangles N2 - tNegatively charged ultrathin gold nanotriangles (AuNTs) were synthesized in a vesicular dioctyl sodiumsulfosuccinate (AOT)/phospholipid-based template phase. These “naked” AuNTs with localized surfaceplasmon resonances in the NIR region at about 1300 nm and special photothermal properties are ofparticular interest for imaging and hyperthermia of cancerous tissues. For these kinds of applicationsthe toxicity and the cellular uptake of the AuNTs is of outstanding importance. Therefore, this studyfocuses on the toxicity of “naked” AOT-stabilized AuNTs compared to polymer-coated AuNTs. Poly-meric coating consisted of non-modified hyperbranched poly(ethyleneimine) (PEI), maltose-modifiedpoly(ethyleneimine) (PEI-Mal) and heparin. The toxicological experiments were carried out with twodifferent cell lines (embryonic kidney carcinoma cell line HEK293T and NK-cell leukemia cell line YTS).This study revealed that the heparin-coating of AuNTs improved biocompatibility by a factor of 50 whencompared to naked AuNTs. Of note, the highest nontoxic concentration of the AuNTs coated with PEI andPEI-Mal is drastically decreased. Overall, this is mainly triggered by the different surface charges of poly-meric coatings. Therefore, AuNTs coated with heparin were selected to carry out uptake studies. Theirpromising high biocompatibility and cellular uptake may open future studies in the field of biomedicalapplications. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2018 DO - https://doi.org/10.1016/j.colsurfb.2018.04.059 SN - 0927-7765 VL - 167 SP - 560 EP - 567 PB - Elsevier AN - OPUS4-44844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -