TY - JOUR A1 - Chowdhary, S. A1 - Moschner, J. A1 - Mikolajczak, D. J. A1 - Becker, M. A1 - Thünemann, Andreas A1 - Kästner, Claudia A1 - Klemczak, D. A1 - Stegemann, A.-K. A1 - Böttcher, C. A1 - Metrangolo, P. A1 - Netz, R. R. A1 - Koksch, B. T1 - The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation N2 - The hexapeptide hIAPP22–27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild‐type hIAPP′s toxicity to β‐cell death. In amyloid research, the role of hydrophobic and aromatic‐aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic‐aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small‐angle X‐ray scattering (SAXS) to study the impact of side‐chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self‐assembly process. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Nanostructure KW - Peptide KW - Amyloid PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518632 DO - https://doi.org/10.1002/cbic.202000373 VL - 21 IS - 24 SP - 3544 EP - 3554 PB - Wiley CY - Weinheim AN - OPUS4-51863 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Krause, B.-C. A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Laux, P. A1 - Braeuning, A. A1 - Fessard, V. A1 - Thünemann, Andreas A1 - Luch, A. A1 - Lampen, A. T1 - Cellular Effects of In Vitro-Digested Aluminum Nanomaterials on Human Intestinal Cells N2 - Aluminum (Al) can be taken up from food, packaging, or the environment and thus reaches the human gastrointestinal tract. Its toxic potential after oral uptake is still discussed. The fate of different solid and ionic Al species during the passage through the digestive tract is the focus of this research, as well as the cellular effects caused by these different Al species. The present study combines the physicochemical processing of three recently studied Al species (metallic Al0, mineral Al2O3, and soluble AlCl3) in artificial digestion fluids with in vitro cell systems for the human intestinal barrier. Inductively coupled plasma mass spectrometry (ICP-MS) and small-angle X-ray scattering (SAXS) methods were used to characterize the Al species in the artificial digestion fluids and in cell culture medium for proliferating and differentiated intestinal Caco-2 cells. Cytotoxicity testing and cellular impedance measurements were applied to address the effects of digested Al species on cell viability and cell proliferation. Microarray-based transcriptome analyses and quantitative real-time PCR were conducted to obtain a deeper insight into cellular mechanisms of action and generated indications for cellular oxidative stress and an influence on xenobiotic metabolism, connected with alterations in associated signaling pathways. These cellular responses, which were predominantly caused by formerly ionic Al species and only at very high concentrations, were not impacted by artificial digestion. A two-directional conversion of Al between ionic species and solid particles occurred throughout all segments of the gastrointestinal tract, as evidenced by the presence of nanoscaled particles. Nevertheless, this presence did not increase the toxicity of the respective Al species. KW - SAXS KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2020 DO - https://doi.org/10.1021/acsanm.9b02354 VL - 3 IS - 3 SP - 2246 EP - 2256 PB - American Chemical Society AN - OPUS4-50632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Saloga, Patrick E. J. A1 - Thünemann, Andreas T1 - Kinetic monitoring of glutathione-induced silver nanoparticle disintegration N2 - We report on etching of polyacrylic acid-stabilised silver nanoparticles in the presence of glutathione (GSH). The initial particles with a radius of 3.2 nm and consisting of ∼8100 silver atoms dissolve in a two-step reaction mechanism while in parallel smaller silver particles with a radius of 0.65 nm and consisting of 60 to 70 silver atoms were formed. The kinetics of the etching of the initial particles, accompanied by formation of smaller silver particles was interpreted based on in situ, time-resolved small-angle X-ray scattering (SAXS) experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Silver nanoparticles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452464 DO - https://doi.org/10.1039/c8nr02369g SN - 2040-3372 VL - 10 IS - 24 SP - 11485 EP - 11490 PB - The Royal Society of Chemistry AN - OPUS4-45246 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Böhmert, Linda A1 - Braeuning, Albert A1 - Lampen, Alfonso A1 - Thünemann, Andreas T1 - Fate of fluorescence labels - Their adsorption and desorption kinetics to silver nanoparticles N2 - Silver nanoparticles are among the most widely used and produced nanoparticles. Because of their frequent application in consumer products, the assessment of their toxicological potential has seen a renewed importance. A Major difficulty is the traceability of nanoparticles in in vitro and in vivo experiments. Even if the particles are labeled, for example, by a fluorescent marker, the dynamic exchange of ligands often prohibits their spatial localization. Our study provides an insight into the adsorption and desorption kinetics of two different fluorescent labels on silver nanoparticles with a core radius of 3 nm by dynamic light scattering, small-angle X-ray scattering, and fluorescence spectroscopy. We used BSA-FITC and tyrosine as examples for common fluorescent ligands. It is shown that the adsorption of BSA-FITC takes at least 3 days, whereas tyrosine adsorbs immediately. The quantitative amount of stabilizer on the particle surface was determined by fluorescence spectroscopy and revealed that the particles are stabilized by a monolayer of BSA-FITC (corresponding to 20 ± 9 molecules), whereas tyrosine forms a multilayered structure consisting of 15900 ± 200 molecules. Desorption experiments show that the BSA-FITC-stabilized particles are ideally suited for application in in vitro and in vivo experiments because the ligand desorption takes several days. Depending on the BSA concentration in the particles surroundings, the rate constant is k = 0.2 per day or lower when applying first order kinetics, that is, 50% of the BSAFITC molecules are released from the particle’s surface within 3.4 days. For illustration, we provide a first application of the fluorescence-labeled particles in an uptake study with two different commonly used cell lines, the human liver cell model HepG2 and the human intestinal cell model of differentiated Caco-2 cells. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle KW - Silver nanoparticles PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-452166 DO - https://doi.org/10.1021/acs.langmuir.8b01305 SN - 1520-5827 SN - 0743-7463 VL - 34 IS - 24 SP - 7153 EP - 7160 PB - American Chemical Society AN - OPUS4-45216 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Sieg, H. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Lampen, A. A1 - Thünemann, Andreas T1 - Creating the silver standard: Development and applications of a silver nanoparticle reference material N2 - The utilization of silver nanoparticles in consumer related products has significantly increased over the last decade, especially due to their antimicrobial properties. Today they are used in a high variety of products ranging from food containers over children toys and textiles. Therefore, research on the toxicological potential of silver nanoparticles becomes increasingly important for a high amount of studies. Unfortunately, the results of these studies are extremely diverse and do not lead to a consistent evaluation. The central problem lies in the use of a wide range of silver nanoparticles, which show a broad size distribution. To overcome this problem we report on the synthesis and application of small silver nanoparticles with a narrow size distribution (R = 3.1 nm, σ = 0.6 nm). The poly(acrylic acid) stabilized particles are thoroughly characterized by small-angle X-ray scattering, dynamic light scattering and UV/Vis spectroscopy. The particles are highly stable and show no aggregation for more than six months. It is foreseen to use these thoroughly characterized nanoparticles as reference material to compare the catalytic and biological properties of functionalized silver nanoparticles. As a first step the particles are used in the first world-wide inter-laboratory comparison of SAXS. Furthermore, the stabilizing ligand PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione (GSH) and bovine serum albumin (BSA) have been performed as examples. With this flexible system first applications regarding biological application in an artificial digestion procedure have been performed. Thereby the changes in size distribution and aggregation state were monitored by SAXS. Additionally these particles show a high catalytic activity of (436 ± 24) L g-1 s-1 in the reduction of 4- nitrophenol to 4-aminophenol. This activity is two orders of magnitude higher than for other silver particles in the literature. T2 - NanoWorkshop 2018 CY - Berlin, Germany DA - 14.05.2018 KW - Silver nanoparticles KW - SAXS KW - Artificial digestion KW - Catalysis PY - 2018 AN - OPUS4-44911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, B. A1 - Meyer, T. A1 - Sieg, H. A1 - Kästner, Claudia A1 - Reichardt, P. A1 - Tentschert, J. A1 - Jungnickel, H. A1 - Estrela-Lopis, I. A1 - Burel, A. A1 - Chevance, S. A1 - Gauffre, F. A1 - Jalili, P. A1 - Meijer, J. A1 - Böhmert, L. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Fessard, V. A1 - Laux, P. A1 - Lampen, A. A1 - Luch, A. T1 - Characterization of aluminum, aluminum oxide and titanium dioxide nanomaterials using a combination of methods for particle surface and size analysis N2 - The application of appropriate analytical techniques is essential for nanomaterial (NM) characterization. In this study, we compared different analytical techniques for NM analysis. Regarding possible adverse health effects, ionic and particulate NM effects have to be taken into account. As NMs behave quite differently in physiological media, special attention was paid to techniques which are able to determine the biosolubility and complexation behavior of NMs. Representative NMs of similar size were selected: aluminum (Al0) and aluminum oxide (Al2O3), to compare the behavior of metal and metal oxides. In addition, titanium dioxide (TiO2) was investigated. Characterization techniques such as dynamic light scattering (DLS) and nanoparticle tracking analysis (NTA) were evaluated with respect to their suitability for fast characterization of nanoparticle dispersions regarding a particle's hydrodynamic diameter and size distribution. By application of inductively coupled plasma mass spectrometry in the single particle mode (SP-ICP-MS), individual nanoparticles were quantified and characterized regarding their size. SP-ICP-MS measurements were correlated with the information gained using other characterization techniques, i.e. transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS). The particle surface as an important descriptor of NMs was analyzed by X-ray diffraction (XRD). NM impurities and their co-localization with biomolecules were determined by ion beam microscopy (IBM) and confocal Raman microscopy (CRM). We conclude advantages and disadvantages of the different techniques applied and suggest options for their complementation. Thus, this paper may serve as a practical guide to particle characterization techniques. KW - Small-angle X-ray scattering KW - SAXS PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447057 DO - https://doi.org/10.1039/C8RA00205C SN - 2046-2069 VL - 8 IS - 26 SP - 14377 EP - 14388 PB - The Royal Society of Chemistry AN - OPUS4-44705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Lampen, A. A1 - Thünemann, Andreas T1 - What happens to the silver ions? – Silver thiocyanate nanoparticle formation in an artificial digestion N2 - An artificial digestion of silver nitrate is reported. It is shown that AgSCN nanoparticles emerge from ionic silver in saliva and remain present during the entire digestion process. The particles were characterized by infrared spectroscopy and small- and wide-angle X-ray scattering (SAXS/WAXS) regarding their composition and size distribution. KW - SAXS KW - WAXS KW - Artificial digestion PY - 2018 DO - https://doi.org/10.1039/c7nr08851e SN - 2040-3364 SN - 2040-3372 VL - 10 IS - 8 SP - 3650 EP - 3653 PB - RSC Publ. CY - Cambridge AN - OPUS4-44277 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Saloga, Patrick E. J. A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - High-speed but not magic: Microwave-assisted synthesis of ultra-small silver nanoparticles N2 - Reaction procedures have been improved to achieve higher yields and shorter reaction times: one possibility is the usage of microwave reactors. In the literature, this is under discussion, for example, nonthermal effects resulting from the microwave radiation are claimed. Especially for the synthesis of nanomaterials, it is of crucial importance to be aware of influences on the reaction pathway. Therefore, we compare the syntheses of ultra-small silver nanoparticles via conventional and microwave heating. We employed a versatile one-pot polyol synthesis of poly(acrylic acid)-stabilized silver nanoparticles, which display superior catalytic properties. No microwave-specific effects in terms of particle size distribution characteristics, as derived by small-angle X-ray scattering and dynamic light scattering, are revealed. Because of the characteristics of a closed system, microwave reactors give access to elevated temperatures and pressures. Therefore, the speed of particle formation can be increased by a factor of 30 when the reaction temperature is increased from 200 to 250 °C. The particle growth process follows a cluster coalescence mechanism. A postsynthetic incubation step at 250 °C induces a further growth of the particles while the size distribution broadens. Thus, utilization of microwave reactors enables an enormous decrease of the reaction time as well as the opportunity of tuning the particle size. Possibly, decomposition of the stabilizing ligand at elevated temperatures results in reduced yields. A compromise between short reaction times and high yields can be found at a temperature of 250 °C and a corresponding reaction time of 30 s. KW - Silver nanoparticles KW - SAXS KW - Small-angle X-ray scattering KW - Microwave synthesis PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-437028 DO - https://doi.org/10.1021/acs.langmuir.7b01541 SN - 0743-7463 SN - 1520-5827 VL - 34 IS - 1 SP - 147 EP - 153 PB - American Chemical Society CY - Washington, D.C. AN - OPUS4-43702 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Böhmert, L. A1 - Lampen, A. A1 - Thünemann, Andreas T1 - What does your gut see? – Silver nanoparticles in an artificial digestion N2 - Over the last decade nanoparticles are progressively included in products of our daily life. Due to their antimicrobial properties, silver nanoparticles are used in a high variety of consumer products ranging from food containers over medicine and textiles. Therefore, research on the toxicological potential of nanosilver becomes increasingly important. This includes investigations concerning uptake, distribution and excretion of the particles. However, little attention was paid to changes of physical and chemical properties of the particles in the human body. One of the most important questions is if the particles can pass the digestion process without altering their shape and size. In this study we report on a versatile system of ultra-small silver nanoparticles with a mean volume weighted radius of 3.1 nm and a narrow size distribution width of 20%. The nanoparticles’ coating of poly (acrylic acid) can easily be exchanged by biocompatible ligands like albumin or glutathione. The particles are thoroughly characterized by small angle X-ray scattering (SAXS), DLS, IR and UV/Vis spectroscopy. We used the particles in an artificial digestion procedure which mimics the gastro-intestinal passage (Figure 1). Thereby the changes in the size distribution during the digestion process were analytically monitored by SAXS. Additionally, we used as food components oil, starch, skimmed milk powder and mixture thereof to provide a preferably realistic environment. Large aggregates of up to 56 nm were formed in the absence of food additives. In contrast, the presence of oil and starch limit the radii of aggregates to about 10 nm. Milk powder shows strong protective properties resulting in only small aggregates of 6 nm radii. Our results indicate that silver can indeed pass the digestion process in a nanoscale form depending on the nanoparticle coating and additional ingredients. These results have an impact on future toxicological considerations regarding silver nanoparticle-containing consumer products. T2 - 5th Nano Today Conference CY - Waikoloa Village, HI, USA DA - 06.12.2017 KW - SAXS KW - Artificial digestion KW - Silver nanoparticles KW - Food additives PY - 2017 AN - OPUS4-43499 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Highly enhanced catalytic activity of silver N2 - Silver nanoparticles are one of the most widespread consumer related nanoparticles worldwide. Since the particles show special optical and antibacterial properties they are used for a wide range of applications from biological investigations over medical applications and catalysis. Especially the outstanding question of applicable alternatives for catalysts in diverse reactions can be addressed with the design of versatile system of small silver nanoparticles. In this study we present the synthesis and application of ultra-small silver nanoparticles with a narrow size distribution (R = 3.1 nm, σ = 0.6 nm). The particles are thoroughly characterized by small angle X-ray scattering, dynamic light scattering and UV/Vis spectroscopy. As a representative test reaction the reduction of 4-nitrophenol to 4-aminophenol was chosen. The particles show a catalytic activity of (436 ± 24) L g-1 s-1, which is two orders of magnitude higher than for other silver particles in the literature. The particles surrounding shell, composed of poly(acrylic acid), provides the particles with a good accessibility for the reactants. Since the catalytic activity strongly depends on the surrounding ligand, the particles shell can also be exchanged by other ligands enabling a tuning of the catalytic activity to a desired value. This shows the high flexibility of this system which can also be applied for other catalytic reactions. T2 - 5th Nano Today Conference CY - Waikoloa Village, HI, USA DA - 06.12.2017 KW - SAXS KW - Catalysis KW - Silver nanoparticles KW - Reduction 4-nitrophenol PY - 2017 AN - OPUS4-43496 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sieg, H. A1 - Kästner, Claudia A1 - Krause, B. A1 - Meyer, T. A1 - Burel, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Jungnickel, H. A1 - Tentschert, J. A1 - Laux, P. A1 - Braeuning, A. A1 - Estreal-Lopis, I. A1 - Gauffre, F. A1 - Fessard, V. A1 - Meijer, J. A1 - Luch, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Impact of an artificial digestion procedure on aluminum-containing nanomaterials N2 - Aluminum has gathered toxicological Attention based on relevant human exposure and its suspected hazardous potential. Nanoparticles from food supplements or Food contact materials may reach the human gastrointestinal tract. Here, we monitored the physicochemical fate of aluminum containing nanoparticles and aluminum ions when passaging an in vitro model of the human gastrointestinal tract. Smallangle X-ray scattering (SAXS), transmission electron microscopy (TEM), ion beam microscopy (IBM), secondary ion beam mass spectrometry (TOF-SIMS), and inductively coupled plasma mass spectrometry (ICP-MS) in the singleparticle mode were employed to characterize two aluminumcontaining nanomaterials with different particle core materials (Al0, γAl2O3) and soluble AlCl3. Particle size and shape remained unchanged in saliva, whereas strong Agglomeration of both aluminum nanoparticle species was observed at low pH in gastric fluid together with an increased ion release. The levels of free aluminum ions decreased in intestinal fluid and the particles deagglomerated, thus liberating primary particles again. Dissolution of nanoparticles was limited and substantial changes of their shape and size were not detected. The amounts of particle-associated phosphorus, chlorine, potassium, and calcium increased in intestinal fluid, as compared to nanoparticles in standard dispersion. Interestingly, nanoparticles were found in the intestinal fluid after addition of ionic aluminum. We provide a comprehensive characterization of the fate of aluminum nanoparticles in simulated gastrointestinal fluids, demonstrating that orally ingested nanoparticles probably reach the intestinal epithelium. The balance between dissolution and de novo complex formation should be considered when evaluating nanotoxicological experiments. KW - Small-angle X-ray scattering KW - SAXS KW - Nanoparticle PY - 2017 DO - https://doi.org/10.1021/acs.langmuir.7b02729 SN - 1520-5827 SN - 0743-7463 VL - 33 IS - 40 SP - 10726 EP - 10735 PB - Americal Chemical Society AN - OPUS4-42438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pauw, Brian Richard A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Nanoparticle size distribution quantification: results of a small-angle X-ray scattering inter-laboratory comparison N2 - This paper presents the first worldwide inter-laboratory comparison of small-angle X-ray scattering (SAXS) for nanoparticle sizing. The measurands in this comparison are the mean particle radius, the width of the size distribution and the particle concentration. The investigated sample consists of dispersed silver nanoparticles, surrounded by a stabilizing polymeric shell of poly(acrylic acid). The silver cores dominate the X-ray scattering pattern, leading to the determination of their radius size distribution using (i) the generalized indirect Fourier transformation method, (ii) classical model fitting using SASfit and (iii) a Monte Carlo fitting approach using McSAS. The application of these three methods to the collected data sets from the various laboratories produces consistent mean number- and volume-weighted core radii of Rn = 2.76 (6) nm and Rv = 3.20 (4) nm, respectively. The corresponding widths of the lognormal radius distribution of the particles were σn = 0.65 (1) nm and σv = 0.71 (1) nm. The particle concentration determined using this method was 3.0 (4) g l−1 or 4.2 (7) × 10−6 mol l−1. These results are affected slightly by the choice of data evaluation procedure, but not by the instruments: the participating laboratories at synchrotron SAXS beamlines, commercial and in-house-designed instruments were all able to provide highly consistent data. This demonstrates that SAXS is a suitable method for revealing particle size distributions in the sub-20 nm region (at minimum), out of reach for most other analytical methods. KW - SAXS KW - Small-angle X-ray scattering KW - Silver nanoparticles PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-422800 DO - https://doi.org/10.1107/S160057671701010X SN - 1600-5767 VL - 50 IS - 5 SP - 1280 EP - 1288 PB - (IUCr) International Union of Crystallography AN - OPUS4-42280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Lichtenstein, Dajana A1 - Lampen, Alfonso A1 - Thünemann, Andreas T1 - Monitoring the fate of small silver nanoparticles during artificial digestion N2 - The report on the results of an in vitro digestion study of silver nanoparticles in presence and absenceof food. The particles were poly(acrylic acid) stabilized ultra-small silver nanoparticles with a radius of 3.1 nm and a relative size distribution width of 0.2. As food components oil, starch, skimmed milk powderand a mixture thereof were chosen. Aggregation of the particles was quantified with small-angle X-rayscattering in terms of log-normal radii distributions. Complete aggregation of the primary particles wasdetermined in the absence of food. In contrast, the presence of oil and starch initiates a disaggregationin the intestine. Only small aggregates of 6 nm radii and aggregation numbers of 7 were found in thepresence of milk powder. It prevents primary particles from etching in the gastric and intestinal juice.Our results indicate that the silver nanoparticles can pass the digestion process in a nanoscale form butundergo a strong and food-dependent transformation in their state of aggregation. KW - Small-angle X-ray scattering KW - SAXS PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404099 DO - https://doi.org/10.1016/j.colsurfa.2016.08.013 SN - 0927-7757 SN - 1873-4359 VL - 526 SP - 76 EP - 81 PB - Elsevier B.V. AN - OPUS4-40409 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia T1 - Food-dependent aggregation of silver nanoparticles during an artificial digestion N2 - In the last decade the utilization of silver nanoparticles in consumer related products is strongly enhanced. Therefore, many studies focus on investigations regarding their toxicological potential. This includes investigations concerning uptake, distribution and excretion of the particles. However, little attention was paid to changes of physical and chemical properties of the particles in the human body. A major question is if the particles are size and shape persistent and can survive the digestion process. In this study we analytically monitored the changes in the size distribution of colloidal silver during an artificial digestion process with the help of small angle X-ray scattering. We synthesized poly(acrylic acid) stabilized ultra-small silver nanoparticles with a radius of 3.1 nm and a size distribution width of 20%. The artificial digestion process mimics the gastro-intestinal passage and simulates the oral, gastric and small intestinal conditions. Additionally, we used as food components oil, starch, skimmed milk powder and mixture thereof to provide a preferably realistic environment. Large aggregates of up to 56 nm were determined in the absence of food additives. In contrast, the presence of oil and starch limit the radii of aggregates to about 10 nm. Only small aggregates of 6 nm radii were found in the presence of milk powder. It prevents primary particles from etching in the intestinal juice. Our results indicate that the silver nanoparticles can pass the digestion process in a nanoscale form but undergo a strong and food-dependent transformation in their state of aggregation. T2 - Australian Colloid and Interface Symposium 2017 CY - Coffs Harbour, New South Wales, Australia DA - 29.01.2017 KW - SAXS KW - Food additives KW - Aggregation PY - 2017 AN - OPUS4-39204 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Tuning the catalytic activity of silver nanoparticles N2 - The use of silver nanoparticles in consumer related products has significantly increased over the last decade, especially due to their antimicrobial properties. Today they are used in a variety of products, which range from textiles to dietary supplements. Thus, investigations on nanoscale silver become increasingly important in many fields like biomedicine or catalysis. Unfortunately, the results of these studies are extremely diverse and do not lead to a consistent evaluation of the toxicity of silver nanoparticles. The main problem is the use of nonuniform and poorly characterized particles with broad size distributions. To overcome this problem we modified the known polyol process to synthesize ultra-small core-shell silver nanoparticles in a large scale. The particles are highly stable and show no aggregation for more than six months. Small-angle X-ray scattering analysis reveals a narrow size distribution of the silver cores with a mean radius of 3 nm and a distribution width of 0.6 nm. Dynamic light scattering provides a hydrodynamic radius of 10.0 nm and a PDI of 0.09. The stabilizing ligand PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione and bovine serum albumin have been successfully performed. To demonstrate the broad applicability of our particles we performed catalysis experiments with the reduction of 4-nitrophenol as model reaction. The PAA-stabilized particles show a catalytic activity of (436 ± 24) L g-1 s-1, which is the highest reported in literature for silver nanoparticles. In contrast, GSH and BSA passivate the surface substantially resulting in lower catalytic activities. T2 - Australian Colloid and Interface Symposium 2017 CY - Coffs Harbour, New South Wales, Australia DA - 29.01.2017 KW - SAXS KW - Protein coating KW - Catalysis PY - 2017 AN - OPUS4-39203 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Tracking silver nanoparticles: ultra-small silver refunctionalizable with fluorescent biopolymers N2 - We report on the synthesis of ultra-small silver nanoparticles and their quantitative characterization by small-angle X-ray scattering. The size distribution was derived by utilizing a Monte-Carlo data evaluation procedure reported by Pauw et al. Mean volume-weighted sizes are 3 nm with a size distribution width of 18 %. The particles should be used as reference materials for comparison of the result of different analytical methods among which are field-flow fractionation (FFF), dynamic light scattering (DLS), nanoparticle tracking analysis (NTA) and electron microscopy (EM). In addition further use of the particles is foreseen for comparison of studies on the toxicology of nanoparticles. Therefore the silver nanoparticles are transfunctionalized with fluorescent marked albumin (BSA-FITC) and also thoroughly characterized. With this it is possible to track silver nanoparticles and their behavior in interaction with cells. T2 - Polydays 2016 CY - Potsdam, Germany DA - 28.09.2016 KW - SAXS KW - Biological application KW - Ligand exchange KW - Toxicity PY - 2016 AN - OPUS4-37651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Coating-tuned catalytic activity of silver nanoparticles N2 - The use of silver nanoparticles in consumer related products has significantly increased over the last decade, especially due to their antimicrobial properties. Today they are used in a variety of products, which range from textiles over children toys and dietary supplements. Therefore, research on silver in a nanoscale form becomes increasingly important for a high amount of studies. Unfortunately the results of these studies are extremely diverse and do not lead to a consistent evaluation of the toxicity of silver nanoparticles. The central problem lies in the utilization of a wide range of silver nanoparticles, which show a broad size distribution. To overcome this problem we synthesized ultra-small core-shell silver nanoparticles by an up-scaled modification of the polyol process. The particles are highly stable and show no aggregation for more than six months. Small-angle X-ray scattering (SAXS) analysis reveal a narrow size distribution of the silver cores with a mean radius of RC = 3.0 nm and a distribution width of 0.6 nm. Dynamic light scattering (DLS) provides a hydrodynamic radius of RH = 10.0 nm and a PDI of 0.09. The surface of the particles is covered with poly(acrylic acid) (PAA) forming a shell with a thickness of 7.0 nm, which provides colloidal stability lasting for more than six months at ambient conditions. It is foreseen to use these thoroughly characterized particles as reference material to compare the catalytic and biological properties of functionalized silver nanoparticles. The stabilizing ligand PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione (GSH) and bovine serum albumin (BSA) have been performed as examples. We demonstrate that the particles effectively catalyze the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride. With PAA as stabilizer, the catalytic activity of (436 ± 24) L g-1 s-1 is the highest reported in literature for silver nanoparticles. GSH and BSA passivate the surface substantially resulting in lower catalytic activities of (77.6 ± 0.9) L g-1 s-1 and (3.47 ± 0.50) L g-1 s-1, respectively. The ultra-small particles were already used in the Nano Define project. Due to their small size it is possible to investigate the detection limits of different analytical techniques like electron microcopy, field flow fractionation or single particle tracking. In this project they serve as the calibration standard with the smallest radius. T2 - International summer school “Nanoscience meets Metrology” CY - Turin, Italy DA - 04.09.2016 KW - Protein coating KW - SAXS KW - Ligand exchange PY - 2016 AN - OPUS4-37352 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Artificial Digestion of Colloidal Silver Monitored by Small-Angle X-Ray Scattering N2 - In the last decade the utilization of silver nanoparticles in consumer related products is enhanced. Therefore, many studies focus on investigations regarding their toxicological potential. This includes investigations concerning uptake, distribution and excretion of the particles. So far, little attention was paid to changes of physical and chemical properties in the human body. During processes like digestion, the question arises whether they can pass this barrier in a nanoscale form. In this study we analytically monitored the changes in the size distribution of colloidal silver during an artificial digestion process with the help of small angle x-ray scattering (SAXS). Therefore, we synthesized polyacrylic acid stabilized ultra-small silver nanoparticles with a radius of 3 nm and a size distribution width of 18%. The artificial digestion process mimics the gastro-intestinal passage and simulates the oral, gastric and small intestinal conditions. Additionally, food components like oil, starch, glucose and skimmed milk powder are used to provide a preferably realistic environment. In absence of any food components the low pH initiates aggregation of the particles in the stomach. However, the particles unexpectedly stabilize in a defined cluster form with a mean radius of 12 nm. By the use of the food components oil and starch we observed that the particles are dispersed again. Now we found a bimodal size distribution of primary particles and aggregates. In contrast to that, with skimmed milk powder only a slight aggregation occurs in the stomach. In the gastric tract the particle distribution is stabilized at a mean volume weighted radius of 5 nm. Hence, skimmed milk powder acts as a colloidal stabilizer. For comparison we also used silver nitrate as a control substance. Surprisingly, we observed a formation of nanoparticles already in the saliva. During the digestion process the distribution narrows and finally in the intestine it shows a stable distribution with a mean volume weighted radius of 3 nm and a small fraction of aggregates. These results indicate that the silver nanoparticles can pass the digestion process in a nanoscale form but undergo a transformation in the size distribution. However, even from pure silver nitrate nanoparticle formation can be observed. This sketches a complex mechanism in which not only food components but also silver ions cause changes in nanoparticle size and aggregation. T2 - 6th International Colloids Conference CY - Berlin, Germany DA - 19.06.2016 KW - SAXS KW - Artificial digestion KW - Silver nanoparticles PY - 2016 AN - OPUS4-36888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -