TY - JOUR A1 - Gerrits, Ruben A1 - Stepec, Biwen An A1 - Bäßler, Ralph A1 - Becker, Roland A1 - Dimper, Matthias A1 - Feldmann, Ines A1 - Goff, Kira L. A1 - Günster, Jens A1 - Hofmann, Andrea A1 - Hesse, René A1 - Kirstein, Sarah A1 - Klein, Ulrich A1 - Mauch, Tatjana A1 - Neumann-Schaal, Meina A1 - Özcan Sandikcioglu, Özlem A1 - Taylor, Nicole M. A1 - Schumacher, Julia A1 - Shen, Yin A1 - Strehlau, Heike A1 - Weise, Matthias A1 - Wolf, Jacqueline A1 - Yurkov, Andrey A1 - Gieg, Lisa M. A1 - Gorbushina, Anna T1 - A 30-year-old diesel tank: Fungal-dominated biofilms cause local corrosion of galvanised steel N2 - The increased use of biodiesel is expected to lead to more microbial corrosion, fouling and fuel degradation issues. In this context, we have analysed the metal, fuel and microbiology of a fouled diesel tank which had been in service for over 30 years. The fuel itself, a B7 biodiesel blend, was not degraded, and—although no free water phase was visible—contained a water content of ~60 ppm. The microbial community was dominated by the fungus Amorphotheca resinae, which formed thick, patchy biofilms on the tank bottom and walls. The tank sheets, composed of galvanised carbon steel, were locally corroded underneath the biofilms, up to a depth of a third of the sheet thickness. On the biofilm-free surfaces, Zn coatings could still be observed. Taken together, A. resinae was shown to thrive in these water-poor conditions, likely enhancing corrosion through the removal of the protective Zn coatings. KW - Fungal biofilms KW - Biodiesel degradation mechanisms PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-655014 DO - https://doi.org/10.1038/s41529-025-00731-2 SN - 2397-2106 VL - 10 IS - 1 SP - 1 EP - 14 PB - Springer Science and Business Media LLC AN - OPUS4-65501 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pavlidis, Sotirios A1 - Fischer, Eric W. A1 - Opis-Basilio, Amanda A1 - Bera, Ayan A1 - Guilherme Buzanich, Ana A1 - Álvarez-Sánchez, María A1 - Wittek, Severin A1 - Emmerling, Franziska A1 - Ray, Kallol A1 - Roemelt, Michael A1 - Abbenseth, Josh T1 - Ambiphilic Reactivity and Switchable Methyl Transfer at a T-Shaped Bi(NNN) Complex Enabled by a Redox-Active Pincer Ligand N2 - We report the transition-metal-like reactivity of a geometrically constrained, ambiphilic bismuth(III) trisamide. Planarization of the Bi(III) center unlocks Bi−C bond formation when reacted with mild electrophiles (alkyl iodides and triflates) accompanied by two-electron oxidation of the utilized NNN pincer nligand. The preservation of the bismuth oxidation state is confirmed by single-crystal X-ray diffraction and X-ray absorption spectroscopy and corroborated by theoretical calculations. Sequential reduction of the oxidized ligand framework alters the reactivity of a generated Bi−Me unit, enabling controlled access to methyl cation, radical, and anion equivalents. The full [Bi(Me)(NNN)]+/•/− redox series was comprehensively characterized using NMR and EPR spectroscopy as well as spectro-electrochemistry. This work represents the first example of ligand-assisted, redox-neutral C−X bond splitting at bismuth, establishing a new paradigm for synthetic bismuth chemistry. KW - Pincer ligand KW - XAS KW - Redox PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654948 DO - https://doi.org/10.1021/jacs.5c18955 SN - 0002-7863 VL - 148 IS - 2 SP - 2683 EP - 2692 PB - American Chemical Society (ACS) AN - OPUS4-65494 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yao, Xingyu A1 - Antunes, Margarida M. A1 - Guilherme Buzanich, Ana A1 - Cabanelas, Pedro A1 - Valente, Anabela A. A1 - Pinna, Nicola A1 - Russo, Patrícia A. T1 - Formation, Phase Transition, Surface, and Catalytic Properties of Cubic ZrO 2 Nanocrystals N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-Performance sodium storage anode. The presence of iron triggers the loss of long-rangeorder through disorder of the FeO6 octahedra local structure, subsequentlyallowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites forpseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - XAS KW - Sodium-ion Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654955 DO - https://doi.org/10.1021/acs.chemmater.5c01483 SN - 0897-4756 VL - 37 IS - 21 SP - 8568 EP - 8580 PB - American Chemical Society (ACS) AN - OPUS4-65495 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liu, Yanchen A1 - Guilherme Buzanich, Ana A1 - Alippi, Paola A1 - Montoro, Luciano A. A1 - Lee, Kug‐Seung A1 - Jeon, Taeyeol A1 - Weißer, Kilian A1 - Karlsen, Martin A. A1 - Russo, Patrícia A. A1 - Pinna, Nicola T1 - FeNb 2 O 6 as a High‐Performance Anode for Sodium‐Ion Batteries Enabled by Structural Amorphization Coupled with NbO 6 Local Ordering N2 - Pseudocapacitance-type transition metal oxides have been extensively investigated as anodes for lithium-ion batteries (LIBs). Currently, they are also gaining attention for sodium-ion batteries (SIBs) due to their low volume change and safety. However, their performance in sodium storage remains limited, primarily due to the larger Na+ ion radius. Here, for the first time, an iron niobate is reported with a columbite structure as a high-performance sodium storage anode. The presence of iron triggers the loss of long-range order through disorder of the FeO6 octahedra local structure, subsequently allowing reversible sodium storage in an amorphous phase. Simultaneously, the formation of short-range ordered zigzag-chain structures within the NbO6 planes creates a “skeleton” that offers abundant active sites for pseudocapacitive ion storage and enhanced ion diffusion pathways. These characteristics of FeNb2O6 make it an effective intercalation host, offering high capacity along with fast Na+ kinetics, as demonstrated through operando and ex situ characterizations. It leads to an applicable reversible capacity (>300 mAh g−1) with a favorable average voltage of ≈0.6 V and excellent rate capability (180.4 mAh g−1 at a current density of 2 A g−1). This study provides insights into the development of intrinsically active transition metal oxides for Na+-ion intercalation. KW - SIB KW - XAS KW - Sodium-ion Batteries PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654931 DO - https://doi.org/10.1002/adma.202504100 SN - 0935-9648 VL - 37 IS - 46 SP - 1 EP - 13 PB - Wiley AN - OPUS4-65493 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Faustino, Leandro A. A1 - de Angelis, Leonardo D. A1 - de Melo, Eduardo C. A1 - Farias, Giliandro A1 - dos Santos, Egon C. A1 - Miranda, Caetano R. A1 - Buzanich, Ana G. A1 - Torresi, Roberto M. A1 - de Oliveira, Paulo F.M. A1 - Córdoba de Torresi, Susana I. T1 - Urea synthesis by Plasmon-Assisted N2 and CO2 co-electrolysis onto heterojunctions decorated with silver nanoparticles N2 - The N2 + CO2 co-electrolysis to urea synthesis has become a promising alternative to the energy intensive traditional processes for urea production. However, there are still challenges in this approach, especially due to the competition with HER (Hydrogen Evolution Reaction) leading to low efficiency. Electrochemistry assisted by localized surface plasmon resonance (LSPR) using metal nanoparticles has been reported to enhance different electrochemical reactions. Here we report an electrochemical LSPR assisted urea synthesis using Ag nanoparticles (NPs) supported on BiVO4/BiFeO3 catalyst mechanochemically synthesized. The electrochemical experiments were performed under dark and upon plasmon excitation at the LSPR region of Ag NPs. Our results demonstrated that exciting in the LSPR range, urea yield rate and Faradic efficiency were considerably improved with reduced overpotential, 19.2 μmol h− 1 g− 1 and FE 24.4% at +0.1 V vs RHE compared to 9.6 μmol h− 1 g− 1 and FE 9.4% at − 0.2 V vs RHE under dark conditions. Further in situ FTIR-RAS experiments for mechanism investigation revealed the presence of N-H and C-N intermediates and the real effect of Ag plasmon excitation on HER and N2 + CO2 co-electrolysis. Theoretical calculations confirm the energy of the species involved in C-N coupling as well the role of the complex catalytic sites, which agrees with XAS measurements. KW - Plasmon-assited KW - XAS KW - Urea KW - Electrocatalysis PY - 2025 DO - https://doi.org/10.1016/j.cej.2025.163072 SN - 1385-8947 VL - 513 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-65492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bustos, Jenna A1 - Shohel, Mohammad A1 - Guilherme Buzanich, Ana A1 - Zakharov, Lev A1 - Buils, Jordi A1 - Segado‐Centellas, Mireia A1 - Bo, Carles A1 - Nyman, May T1 - Technetium and Rhenium Auto‐reduction, Polymerization and Lability towards Group VII Polyoxometalate Chemistry N2 - AbstractGroup VII Tc and Re have long been studied to develop both radiopharmaceuticals and technologies for nuclear materials management. Fundamental research has targeted understanding this periodic table crossroads where polyoxometalates meets metal‐metal bonded complexes. Here we have isolated green hygroscopic and metastable crystals of (ReVI,oct)2(ReVII,tet)2(OH)2(O)12⋅H2O (ReVI,VII‐green, tet=tetrahedral, oct=octahedral), determined by single‐crystal x‐ray diffraction. In addition to color, Re‐L1 X‐ray absorption near‐edge spectroscopy confirms the reduced oxidation state. ReVI,VII‐green provides the first demonstration of Re autoreduction, long‐observed for Mn and Tc. We also isolated and structurally characterized [Tc4O4(H2O)2(ReO4)14]2− (Tc4Re14) polyanion crystals that contain Tc(V) and Re(VII), consistent with greater stability of reduced Tc compared to reduced Re. Small angle X‐ray scattering of both compounds and prior‐reported polyanion [Tc4O4(H2O)2(TcO4)14]4− (Tc20) dissolved in acetonitrile indicated a qualitative lability order of oxo‐linkages of Re‐O−Re Re‐O−Tc Tc‐O−Tc, and lability of Tc20 was also probed by 99Tc nuclear magnetic resonance spectroscopy. Computation provided insight into 99Tc chemical shifts as well as lability. Based on both reducibility and solution phase dynamics of polynuclear compounds investigated here, Re is an imperfect surrogate for Tc, and further expansion of group VII polyoxometalate chemistry seems promising. KW - XANES KW - Polyoxometalate KW - Technetium PY - 2025 DO - https://doi.org/10.1002/chem.202404144 SN - 0947-6539 VL - 31 IS - 21 SP - 1 EP - 7 PB - Wiley-VCH Verl. AN - OPUS4-65491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gugin, Nikita A1 - Schwab, Alexander A1 - Carraro, Francesco A1 - Tavernaro, Isabella A1 - Falkenhagen, Jana A1 - Villajos, Jose A1 - Falcaro, Paolo A1 - Emmerling, Franziska T1 - ZIF-8-based biocomposites via reactive extrusion: towards industrial-scale manufacturing N2 - Mechanochemistry, a sustainable synthetic method that minimizes solvent use, has shown great promise in producing metal–organic framework (MOF)-based biocomposites through ball milling. While ball milling offers fast reaction times, biocompatible conditions, and access to previously unattainable biocomposites, it is a batch-type process typically limited to gram-scale production, which is insufficient to meet commercial capacity. We introduce a scalable approach for the continuous solid-state production of MOF-based biocomposites. Our study commences with model batch reactions to examine the encapsulation of various biomolecules into Zeolitic Imidazolate Framework-8 (ZIF-8) via hand mixing, establishing a foundation for upscaling. Subsequently, the process is scaled up using reactive extrusion, enabling continuous and reproducible kilogram-scale production of bovine serum albumin (BSA)@ZIF-8 with tunable protein loading. Furthermore, we achieve the one-step formation of shaped ZIF-8 extrudates encapsulating clinical therapeutic hyaluronic acid (HA). Upon release of HA from the composite, the molecular weight of HA is preserved, highlighting the industrial potential of reactive extrusion for the cost-effective and reliable manufacturing of biocomposites for drug-delivery applications. KW - Mechanochemistry KW - Extrusion KW - Biocompoites KW - MOFs PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654777 DO - https://doi.org/10.1039/D5TA08276E SN - 2050-7496 SP - 1 EP - 14 PB - Royal Society of Chemistry AN - OPUS4-65477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schusterbauer, Robert A1 - Mrkwitschka, Paul A1 - Sahre, Mario A1 - Corrao, Elena A1 - Zurutuza, Amaia A1 - Doolin, Alexander A1 - Pellegrino, Francesco A1 - Radnik, Jörg A1 - Donskyi, Ievgen S. A1 - Hodoroaba, Vasile-Dan T1 - Correlative Chemical Imaging to Reveal the Nature of Different Commercial Graphene Materials N2 - Proper physicochemical characterization of advanced materials and complex industrial composites remains a significant challenge, particularly for nanomaterials, whose nanoscale dimensions and mostly complex chemistry challenge the analysis. In this work, we employed a correlative analytical approach that integrates atomic force microscopy (AFM), scanning electron microscopy (SEM) coupled with energy‐dispersive X‐ray spectroscopy (EDS), time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS), Auger electron spectroscopy (AES), and Raman spectroscopy. This combination enables detailed chemical and structural characterization with sub‐micrometer spatial resolution. Three commercial graphene‐based materials of varying complexity were selected and investigated to test the analytical performance of this approach. Furthermore, one of the commercial graphene oxide samples was chemically functionalized via amination and fluorination. This allowed us to assess how surface modifications influence both the material properties and the limits of the applied analytical techniques. KW - Analytical methods KW - Commercial products KW - Correlative analysis KW - Graphene KW - Surface imaging PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654765 DO - https://doi.org/10.1002/smtd.202502344 SN - 2366-9608 SP - 1 EP - 10 PB - Wiley VHC-Verlag AN - OPUS4-65476 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bartczak, Dorota A1 - Sikora, Aneta A1 - Goenaga-Infante, Heidi A1 - Altmann, Korinna A1 - Drexel, Roland A1 - Meier, Florian A1 - Alasonati, Enrica A1 - Lelong, Marc A1 - Cado, Florence A1 - Chivas-Joly, Carine A1 - Fadda, Marta A1 - Sacco, Alessio A1 - Rossi, Andrea Mario A1 - Pröfrock, Daniel A1 - Wippermann, Dominik A1 - Barbero, Francesco A1 - Fenoglio, Ivana A1 - Booth, Andy M. A1 - Sørensen, Lisbet A1 - Igartua, Amaia A1 - Wouters, Charlotte A1 - Mast, Jan A1 - Barbaresi, Marta A1 - Rossi, Francesca A1 - Piergiovanni, Maurizio A1 - Mattarozzi, Monica A1 - Careri, Maria A1 - Caebergs, Thierry A1 - Piette, Anne-Sophie A1 - Parot, Jeremie A1 - Giovannozzi, Andrea Mario T1 - Multiparameter characterisation of a nano-polypropylene representative test material with fractionation, light scattering, high-resolution microscopy, spectroscopy, and spectrometry methods N2 - Reference and quality control materials with comparable physicochemical properties to nanoplastic contaminants present in environmental and food nanoplastics are currently lacking. Here we report a nanoplastic polypropylene material prepared using a top-down approach involving mechanical fragmentation of larger plastics. The material was found to be homogeneous and stable in suspension and has been characterised for average particle size, size distribution range, particle number concentration, polypropylene mass fraction and inorganic impurity Content using a wide range of analytical methods, including AF4, cFFF, PTA, (MA)DLS, MALS, SEM, AFM, TEM, STEM, EDS,Raman, ICP-MS and pyGC-MS. The material was found to have a broad size distribution, ranging from 50 nm to over 200 nm, with the average particle size value dependent on the technique used to determine it. Particle number concentration ranged from 1.7–2.4 × 1010 g−1 , according to PTA. Spectroscopy techniques confirmed that the material was polypropylene, with evidence of aging due to an increased level of oxidation. The measured mass fraction was found to depend on the marker used and ranged between 3 and 5 μg g−1 . Inorganic impurities such as Si, Al, Mg, K, Na, S, Fe, Cl and Ca were also identified at ng g−1 levels. Comparability and complementarity across the measurement methods and techniques is also discussed. KW - Polypropylene KW - Nanoplastics KW - Analytics KW - Reference material KW - Scattering methods PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654680 DO - https://doi.org/10.1039/D5EN00917K SN - 2051-8153 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65468 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oksal-Kilinc, Sefine A1 - Altmann, Korinna A1 - Seiwert, Bettina A1 - Reemtsma, Thorsten A1 - Ruess, Liliane T1 - Grinding method and oxidative aging modulate the impact of tire wear microplastics on the reproduction of the nematode C. elegans N2 - Rationale Tire abrasion is one of the largest sources of microplastic in aquatic and terrestrial environments. Despite this fact, research on tire wear microplastic (TWP) and its effects on soil ecosystems is scarce, especially regarding natural weathering processes. This leaves a large knowledge gap on the interactions of TWP with soil biota. Methodology Cryo-milled tire tread (CMTT) and diamond-ground tire tread (DGTT) were artificially weathered through dry ozone treatment and heat exposure. Particles were analyzed via scanning electron microscopy, particle size distribution, and shape characterization. TWP leachate composition was examined using liquid chromatography–mass spectrometry. The impact on the reproduction of the nematode Caenorhabditis elegans, a widely used toxicological model, was tested for leachate concentration, exposure duration and TWP aging status, using offspring per adult as the endpoint. Results The comminution method significantly influenced TWP particle size distribution, with diamond grinding yielding smaller particles and a more structured surface morphology than cryo-milling. Aging with ozone (180 min) and heat (20 min at 100 °C) reduced DGTT particle sizes by 27-58%, but not in CMTT. Additionally, aging increased carboxylic functional groups and led to a brittle structure in both TWP types. Leachate composition varied with comminution method and aging. Benzothiazole, N-Cyclo-N-phenylurea, and aniline were more abundant in pristine and aged CMTT and aged DGTT. Diphenylguanidine had the highest concentration in all leachates. Aged TWP leachates, regardless of comminution, had significant toxic effects on C. elegans. Leachate from pristine CMTT was more toxic than from pristine DGTT. Nematode offspring correlated negatively with ozone exposure duration in aged DGTT. Tests with aged CMTT leachate showed even short-term exposure reduced offspring numbers. Discussion The results underscore the importance of oxidative and mechanical weathering in TWP toxicity and challenge the use of pristine particles in toxicological assays for risk assessment in the natural environment. KW - Microplastics KW - Tire abrasion KW - Environment PY - 2025 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654672 DO - https://doi.org/10.1071/EN25051 SN - 1448-2517 VL - 23 IS - 2 SP - 1 EP - 16 PB - CSIRO Publishing AN - OPUS4-65467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wiesner, Yosri A1 - Eisentraut, Paul A1 - Altmann, Korinna T1 - One Year Observation of Microplastic Concentrations in the River Rhine N2 - In recent years, the quantification of microplastics (MP) in aquatic environments has gained increasing attention, particularly regarding their environmental distribution and potential exposure levels. Environmentally relevant exposure data are still essential for a realistic risk assessment of the harmful health potential of microplastics in freshwater systems. This study addresses a large data set of MP concentrations analyzed and processed under statistical aspects and provides mass concentrations as well as associated size fractions of the detected MP. Over a 12 month period, samples were collected at three locations and analyzed across three particle size fractions (100−500 μm, 50−100 μm, and 10−50 μm) using thermalextraction desorption-gas chromatography/mass spectrometry (TED-GC/MS). The most prevalent polymers identified were polyethylene (PE), polypropylene (PP), polystyrene (PS), styrene−butadiene rubber (SBR), and natural rubber (NR). Statistical analyses, including principal component and cluster analysis, revealed size-dependent patterns,minor seasonal variation and spatial variations. These findings are particularly significant for ecotoxicological research and regulatory development, especially regarding tire abrasion a rarely quantified but potentially harmful MP source. The study contributes aluable data for future environmental monitoring and supports EU directives on wastewater and drinking water quality KW - TED-GC/MS KW - Microplastics KW - Environment KW - Monitoring KW - Reference data PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654669 DO - https://doi.org/10.1021/acsestwater.5c00530 SN - 2690-0637 SP - 1 EP - 10 PB - American Chemical Society (ACS) AN - OPUS4-65466 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - George, Janine A1 - Ouellet-Plamondon, Claudiane A1 - Reyes, Kristofer T1 - Introduction to the “Accelerate Conference 2023–2024” themed collection N2 - The collection showcases the ways in which automation, machine learning and robotics are transforming experimental materials science and chemistry into continuous, computationally integrated processes. It features innovations regarding autonomous laboratories, Bayesian optimisation, high-throughput experimentation and computation, and AI-driven literature extraction, which simplify and scale up materials discovery. Together, these works outline a modular, responsible framework for accelerating scientific progress through human-guided, data-driven autonomy. KW - Automation KW - Materials Acceleration Platforms KW - Synthesizability KW - Workflows KW - Large Language Models KW - Ontologies KW - Materials Discovery PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654658 DO - https://doi.org/10.1039/d5dd90057c SN - 2635-098X SP - 1 EP - 2 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65465 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Radnik, Jörg T1 - The role of Critical Raw Materials in Advanced Materials for the Energy Transition N2 - Based on the UBA report “Advanced materials for energy transition” by Xenia Knigge and Jörg Radnik the role of critical raw materials is discussed. Critical raw materials are needed in main fields of the energy transition, like photovoltaic, fuel cells, wind energy, and batteries. For the optimisation of the use of these materials different scenarios are discussed like (i) decreasing the needed amount of raw materials, (ii) searching for alternatives, (iii) using technologies which do not require critical raw materials, (iv) increasing the recycling rates, and (v) expanding the raw material sources. T2 - IRISS policy dialogue CY - Online meeting DA - 12.01.2026 KW - Solar Cells KW - Fuel cells KW - Batteries KW - Multi-use materials PY - 2026 AN - OPUS4-65451 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gladrow, K. A1 - Unkovskiy, A. A1 - Yassine, J. A1 - Gaertner, N. A1 - Topolniak, Ievgeniia A1 - Henning, N. A1 - Schmidt, F. T1 - The effect of nitrogen atmosphere during post-curing on cytotoxicity, polishability, flexural strength, and surface hardness of 3D-printed denture bases: an in vitro study N2 - 3D printing is increasingly utilized in dentistry. Compared to traditional manufacturing methods, 3D printing provides advantages such as faster production times and the ability to create complex structures. Although biocompatible materials are available, many are only suitable for temporary applications. This study examines the impact of nitrogen-aided post-processing on the mechanical properties and cytotoxicity of 3D-printed denture bases, with the hypothesis that this post-processing will enhance material properties and decrease cytotoxicity. Specimens were fabricated from V-print dentbase (Voco GmbH, Cuxhaven, Germany) and post-processed either in nitrogen or air. The specimens were categorized into aged and non-aged groups. For comparison, specimens made from milled material were utilized. Vickers hardness, flexural strength, polishability, cytotoxicity, and degree of conversion were then assessed for all groups. The data were analyzed using a one-way ANOVA and Tukey HSD test for multiple comparisons, with a significance threshold of p < 0.05. Post-curing with nitrogen improved the degree of conversion, surface hardness, and biocompatibility of 3D-printed dental materials, confirming reduced cytotoxicity without impairing mechanical properties. Nitrogen increased polymerization and decreased harmful monomers, making it ideal for clinical applications in contact with the oral mucosa. Optimizing post-processing steps, such as curing in nitrogen, enhances biocompatibility while maintaining strength and hardness, ensuring better patient care in dental applications. KW - Biocompatibility KW - V-Print KW - Cytotoxicity KW - Nitrogen KW - Dentistry PY - 2026 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-654504 DO - https://doi.org/10.1007/s10856-026-07006-5 SN - 1573-4838 VL - 37 IS - 1 SP - 1 EP - 13 PB - Springer Science and Business Media LLC AN - OPUS4-65450 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Adhami, Forogh A1 - Safavi, Maliheh A1 - Ehsani, Maryam A1 - Ardestani, Sussan K. A1 - Emmerling, Franziska A1 - Simyari, Farzaneh T1 - Synthesis, crystal structure, and cytotoxic activity of novel cyclic systems in [1,2,4]thiadiazolo[2,3-a]pyridine benzamide derivatives and their copper(ii) complexes N2 - Three N-(pyridine-2-ylcarbamothioyl)benzamide derivatives were synthesized by the reaction of potassium thiocyanate, benzoyl chloride, and 2-amino pyridine derivatives in one pot. The obtained derivatives were oxidized using copper(II) chloride. During the oxidation, two hydrogen atoms were removed, cyclization of the derivatives occurred, and finally, three new N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives were produced. Coordination of these three new derivative ligands to the copper(II) ion resulted in the formation of three new complexes: dichlorobis(N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide)copper(II), dichlorobis(N-(7-methyl-2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2ylidene)benzamide)copper(II), and dichlorobis(N-(5-methyl-2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide)copper(II). All the synthesized products were characterized by IR, 1H NMR, and 13C NMR spectroscopies. Crystal structures of the obtained N-(pyridine-2-ylcarbamothioyl)benzamide derivatives, N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives, and complexes were determined using X-ray single-crystal diffraction; the positions of atoms, bond lengths, bond angles, and dihedral angles were also determined. In all complexes, the coordination of two large monodentate ligands and two chloride anions to the copper(II) ion resulted in the formation of a stable planar geometry around the central ion. Three N-(pyridine-2-ylcarbamothioyl)benzamide derivatives, three N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives, and three complexes were evaluated for their cytotoxicity against five human cancer cell lines (breast cancer cell line MDA-MB-231, neuroblastoma cell line SK-N-MC, prostate adenocarcinoma cell line LNCap, nasopharyngeal epidermoid carcinoma cell line KB, and liver cancer cell line HEPG-2) using an in vitro analysis. The N-(pyridine-2-ylcarbamothioyl)benzamide derivatives showed no cytotoxic activity, whereas the N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives and their complexes showed significant cytotoxicity, especially against MDA-MB-231 and LNCap cell lines. The complexes demonstrated smaller IC50 values than N-(2H-[1,2,4]thiadiazolo[2,3-a]pyridine-2-ylidene)benzamide derivatives. KW - Copper complexes PY - 2014 DO - https://doi.org/10.1039/c3dt52905c SN - 1477-9226 VL - 43 IS - 21 SP - 7945 EP - 7957 PB - Royal Society of Chemistry (RSC) AN - OPUS4-65449 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Robust Data Generation, Heuristics and Machine Learning for Materials Design N2 - My talk covered, among other things, robust data generation for machine learning. It showed how heuristics can be used within machine learning models and how they might also be extracted from machine learning models. Beyond this, I showed an automated pipeline for training machine learning potentials. T2 - Seminar Gruppe Stephan Roche CY - Barcelona, Spain DA - 22.01.2026 KW - Automation KW - Machine Learning KW - Materials Acceleration Platforms KW - Thermal Conductivity KW - Phonons KW - Bonding Analysis PY - 2026 AN - OPUS4-65428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - George, Janine T1 - Robust Data Generation, Heuristics and Machine Learning for Materials Design N2 - My talk covered, among other things, robust data generation for machine learning. It showed how heuristics can be used within machine learning models and how they might also be extracted from machine learning models. Beyond this, I showed an automated pipeline for training machine learning potentials. T2 - Workshop on AI in Sustainable Materials Science CY - Düsseldorf, Germany DA - 27.01.2026 KW - Automation KW - Digitalisation KW - Materials Design KW - Thermal Conductivity KW - Chemical bonding KW - Materials Acceleration Platforms PY - 2026 AN - OPUS4-65427 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ruehle, Bastian T1 - MINERVA-OS: The Orchestrator of our SDL for Nano and Advanced Materials Synthesis N2 - We present our SDL "Minerva" and its' Orchestrator "Minerva-OS". We discuss the general architecture of the orchestrator, the problems our orchestration solution solves, associated objectives, and success criteria. We demonstrate how a user would interact with it and give examples of what it has already been used for. We also provide some explanation of the available and planned features, and how workflows/experiments are represented. Lastly, we discuss key technical challenges we faced during development. T2 - Orchestration Alignment Virtual Workshop CY - Online meeting DA - 20.01.2026 KW - Self Driving Labs KW - Materials Acceleration Platforms KW - Workflows KW - Orchestration PY - 2026 AN - OPUS4-65422 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merino, E. A1 - Cere, S. A1 - Özcan Sandikcioglu, Özlem A1 - Dimper, Matthias A1 - Sobrados, I. A1 - Durán, A. A1 - Castro, Y. T1 - Influence of the BF3·O(C2H5)2 on the corrosion resistance of hybrid silica sol-gel coatings deposited on flash-PEO-treated Mg alloy N2 - Achieving highly cross-linked sol-gel coatings to provide effective corrosion protection of Mg alloys remains a challenging task. The aim of this work is to evaluate the effect boron trifluoride diethyl etherate (BF3·O(C2H5)2) as catalyst to epoxy group in a GPTMS/TEOS/SiO2 sol and assesses its effect on the structure and corrosion resistance properties of Flash-PEO coated pre-treated Mg alloy. 29Si MAS NMR and 13C CPMAS-NMR demonstrated that (BF3·O(C2H5)2) efficiently promotes the epoxy polymerization of the GPTMS and the formation of a hybrid silica network. However, the amount of (BF3·O(C2H5)2) should be optimized to minimize the formation of undesirable byproducts such as ethyl ether terminal units. Therefore, GPTMS/TEOS/SiO2 sols containing different amounts of (BF3·O(C2H5)2) were synthesized and deposited onto the Flash-PEO coated Mg alloy, leading to bilayer systems with a total thickness of ⁓8 μm. The corrosion behavior of the bilayer coatings in 3.5 wt% NaCl solution was evaluated by electrochemical impedance spectroscopy (EIS) and Scanning Kelvin probe microscope (SKPFM). The results revealed that the barrier properties of the coatings with enhanced cross-linked structure showed impedance modulus (│Z│f:0.1 Hz) approximately four orders of magnitude higher than the bare magnesium alloy and two orders of magnitude higher than the F-PEO coated sample. A suitable compromise between (BF3·O(C2H5)2) amount and sol-gel film structure is required to obtain a more durable barrier coating capable to extend the protective lifespan of the magnesium alloy. KW - Sol-gel KW - Corrosion KW - AZ31B Mg alloy KW - Chemical structure KW - SKPFM PY - 2026 DO - https://doi.org/10.1016/j.surfcoat.2025.133055 SN - 0257-8972 VL - 522 SP - 1 EP - 13 PB - Elsevier B.V. AN - OPUS4-65416 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pomorska Gawel, A. A1 - Dąbkowska, M. A1 - Kosior, D. A1 - Batys, P. A1 - Szatanik, A. A1 - Witt, Julia A1 - Özcan Sandikcioglu, Özlem A1 - Michna, A. T1 - Multiscale insights into fibroblast growth factor 23 adsorption on polyelectrolyte layers: From molecular properties to biointerfaces N2 - Fibroblast growth factor 23 (FGF23) is a clinically significant protein hormone regulating phosphate and vitamin D metabolism, with elevated levels linked to chronic kidney disease, cardiovascular disorders, and impaired bone homeostasis. Despite its relevance as both a biomarker and a therapeutic target, its interactions with functional biomaterials remain poorly understood. In this work, we investigate the FGF23 adsorption on polyelectrolyte layers using a combination of theoretical modeling and experimental methods. Theoretical calculations provided insights into the protein's charge distribution and diffusion properties, while experimental measurements quantified its hydrodynamic diameter, electrophoretic mobility, and electrokinetic charge over a broad range of pH values. Microscale thermophoresis revealed quantitative binding affinities of FGF23 to hyaluronic acid, chitosan, and poly(diallyldimethylammonium chloride). Adsorption studies on mica, silica, and polyelectrolyte mono- and bilayers showed that FGF23 binds to both negatively and positively charged substrates, with binding affinities following: hyaluronic acid < poly(diallyldimethylammonium chloride) < chitosan. Desorption occurred more readily from negatively charged surfaces (mica, silica and hyaluronic acid), indicating weaker interactions compared to positively charged layers. These results reveal fundamental aspects of protein –polyelectrolyte interactions and highlight the reversible binding capacity of FGF23 to negatively charged surfaces. Such adsorption behavior provides a physicochemical framework for considering FGF23-polyelectrolyte systems in the design of therapeutic carriers and bioactive materials. However, any direct relevance to wound healing, chronic kidney disease, or cardiovascular disorders remains prospective and requires dedicated biological validation. KW - Molecular dynamics KW - Streaming potential measurements KW - Adsorption KW - Stability KW - Binding affinity PY - 2026 DO - https://doi.org/10.1016/j.ijbiomac.2026.150221 SN - 0141-8130 VL - 341 IS - Part 1 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-65415 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -