TY - JOUR A1 - Richter, Tim A1 - Erxleben, Kjell A1 - Rhode, Michael A1 - Schröpfer, Dirk A1 - Michael, Thomas A1 - Börner, Andreas T1 - Microstructure characterization of dissimilar metal welds of innovative high- and medium-entropy alloys to austenitic stainless steels joint by tungsten inert gas and friction stir welding N2 - The new multi-element alloying concept of systems with defined entropy (HEA — high-entropy alloy or MEA — medium-entropy alloy) is increasing in material research interest. Improved properties or combinations of properties are shown by several systems. Thus, the resulting microstructures and production of HEA/MEA as well as properties have been primarily investigated so far. Furthermore, processing is a key issue to transfer HEA/MEA systems to real components. Since welding is the most important joining process for metals, it is crucial to investigate the influence of welding to guarantee component integrity. Since most HEA are made of expensive alloying elements such as Co or Ni, they will not be used entirely as structural materials. Thus, it can be advantageous to weld conventional alloys such as austenitic stainless steels with the HEA and MEA to produce components that are both application-oriented and economically viable. Therefore, in this paper, first results of dissimilar metal welding, by tungsten inert gas (TIG) and friction stir welding (FSW), of a CoCrFeMnNi HEA as well as a CoCrNi MEA with a conventional AISI 304 austenitic stainless steel are presented. The focus is on the microstructure formation due to the two welding processes. The results of TIG welding show a dendritic microstructure, whereas in FSW both materials are stirred but still coexist. KW - Metals and Alloys KW - Mechanical Engineering KW - Mechanics of Materials PY - 2023 DO - https://doi.org/10.1007/s40194-023-01618-z SN - 1878-6669 SP - 1 EP - 9 PB - Springer AN - OPUS4-59252 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rhode, Michael A1 - Kromm, Arne A1 - Mente, Tobias A1 - Brackrock, Daniel A1 - Czeskleba, Denis A1 - Kannengießer, Thomas T1 - Component test for the assessment of delayed hydrogen-assisted cracking in thick-walled SAW joints for offshore applications N2 - Offshore wind turbines continuously increase in size and weight and demand adequate offshore foundations concepts like monopiles, tripods, or jackets. These components are typically constructed using submerged arc welding (SAW) with high-strength thick steel plates like the S420ML. During welding, the occurrence of delayed hydrogen-assisted cracking (HAC) must be anticipated. HAC is a critical combination of the local hydrogen concentration within a susceptible microstructure under certain mechanical load, i.e., the occurring (welding) residual stresses. The welding sequence of the thick-walled plates complicates the residual stress distribution due to the necessary repeated thermal cycling, i.e., welding seam/layer deposition to fill the joint. For that purpose, SAW with two-wire-technique was used to weld a specially designed and prototype-like mock-up of a real component with a thickness of 50 mm, filled with over 20 passes and a seam length of 1000 mm. Additional welded stiffeners simulated the effect of a high restraint, to achieve critical HAC conditions. The necessity of a minimum waiting time (MWT) before the NDT can be conducted (to exclude HAC) was critically verified by the application of ultrasonic testing of the welded joint at different time-steps of the NDT of up to 48 h after the completion welding. The residual stresses were determined by a robot XRD goniometer. Tensile residual stresses up to the yield limit are found both in the weld metal and in the heat-affected zone. Numerical modeling allowed the qualitative estimation of the hydrogen diffusion in the weld. No noticeable HAC occurrence was identified and confirms the high cracking resistance of the investigated material. Finally, the applicability of the MWT concept should be critically discussed. KW - Hydrogen KW - Cold cracking KW - Minimum Waiting Time KW - Offshore steel grade KW - Component test PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-591981 DO - https://doi.org/10.1007/s40194-023-01658-5 SP - 1 EP - 15 PB - Springer Science and Business Media LLC AN - OPUS4-59198 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schubnell, J. A1 - Konidena, S. K. A1 - Jung, M. A1 - Braun, M. A1 - Ehlers, S. A1 - Madia, Mauro A1 - Kannengießer, Thomas A1 - Löschner, D. T1 - Approach for the probabilistic fatigue assessment of welded joints based on the local geometry of the weld seam N2 - Welded joints show large variation of the weld toe geometry along the weld seam, which is one important reason for the comparably large scatter in fatigue life. Therefore, it is crucial to take the local geometry at the weld toe into account, to reduce the conservatism in fatigue assessment of welded joints. This study is based on the IBESS procedure for the calculation of the fatigue strength, whereby the evaluation of local geometrical parameters is carried out by means of 3D surface scans. The approach is validated against 26 fatigue test series. The fatigue life is in general overpredicted, whereas good agreement is achieved for high stress ratio (R = 0.5). A sensitivity analysis conducted with IBESS shows that weld toe radii ρ < 2 mm and flank angle α < 30° have a significant influence on the calculated fatigue strength. In contrast to this, no strong correlation between ρ and the fatigue strength was determined experimentally in this study. KW - 3D Scanning KW - Fatigue Strength KW - Fracture Mechanics KW - IBESS Approach KW - Local Weld Geometry KW - Welded Joints PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-585700 DO - https://doi.org/10.1111/ffe.14170 SN - 8756-758X SP - 1 EP - 20 PB - Wiley AN - OPUS4-58570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Han, Ying A1 - Kruse, Julius A1 - Rosalie, Julian A1 - Radners, J. A1 - von Hartrott, P. A1 - Skrotzki, Birgit T1 - Influence of mean stress and overaging on fatigue life of aluminum alloy EN AW-2618A N2 - Fatigue tests were performed on the forged aluminum alloy EN AW-2618A in the T61 state. Different stress ratios (R = -1, R = 0.1) were selected to study the influence of mean stress on fatigue life. Two overaged states (10 h/230 ◦C, 1000 h/230 ◦C) were also tested to investigate the influence of overaging on fatigue life. Transmission electron microscopy (TEM) was used to characterize the precipitates (S-phase), which are mainly responsible for the strength of the alloy. A fractographic analysis was also performed to determine the failure mode. Overaging reduces the fatigue life compared to the T61 state. The longer the aging time, the lower the fatigue resistance. The reason is the decrease in (yield) strength, which correlates with the radius of the S-phase: the precipitate radius increases by a factor of approximately two for the overaged states compared to the initial state. The analysis of the fracture surfaces showed crack initiation occurs predominantly on the outer surface and is associated with the primary phases. KW - Aluminum alloys KW - Aging KW - Fatigue KW - Microstructure KW - Electron microscopy KW - S-Phase PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-583708 DO - https://doi.org/10.1016/j.msea.2023.145660 SN - 0921-5093 VL - 886 SP - 1 EP - 10 PB - Elsevier B.V. AN - OPUS4-58370 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Vecchiato, L. A1 - Madia, Mauro A1 - Meneghetti, G. T1 - Extension of the peak stress method to estimate the fatigue limit of welded joints by means of the cyclic R-curve method N2 - A new simplified and effective method has been formalised to estimate the Constant Amplitude Fatigue Limit (CAFL) of stress-relieved steel welded joints subjected to uniaxial push–pull loading and failing from the weld toe. Starting from the sharp V-notch assumption of the NSIF approach and the cyclic R-curve of the material in the heat affected zone, the proposed method identifies the CAFL as threshold level of the local stress field at the V-notched weld toe in the uncracked configuration. Such threshold stress field assures the crack arrest at the V-notched weld toe, according to the cyclic R-curve analysis. The method has been validated against experimental results and proved effective for a straightforward assessment of the CAFL of welded joints, as the stable crack propagation analysis of classical fracture mechanics approaches can be avoided. KW - Cyclic R-curve KW - Welded joint KW - Fatigue limit KW - Peak stress method KW - Finite element analysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-581059 DO - https://doi.org/10.1016/j.tafmec.2023.104039 SN - 0167-8442 VL - 127 SP - 1 EP - 19 PB - Elsevier AN - OPUS4-58105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Nina A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Thermodynamic prediction of precipitations behaviour in HAZ of a gas metal arc welded S690QL with varying Ti and Nb content N2 - For a significant increase in the strength of high-strength fine-grained structural steels with a nominal yield strength ≥690 MPa, the addition of microalloying elements such as Nb and Ti is required. The standard specifications for the chemical composition of these steels (e.g., in EN 10025-6) often only give the manufacturer limit contents to achieve the defined properties. The effect of the alloying elements in the heat affected zone (HAZ) is sometimes completely contrary. This makes it difficult to adequately predict the batch dependency regarding weldability and the load-bearing behaviour of the welded joint. Three different micro-alloyed steels of the grade S690QL were produced on a laboratory scale, focusing on different Nb and Ti contents. To investigate the tempering effect, these were gas metal arc welded in three layers. In addition to metallographic investigations of individual HAZ areas, thermodynamic phase calculations were carried out using Thermo-Calc, following variations in the chemical composition. This provides an understanding of phase transformation, precipitation growth, and dissolution during welding as a function of temperature and cooling conditions. The results show a divergent metallurgical behaviour in the HAZ of the three different micro-alloyed steels. Thereby, the Ti micro-alloyed grade showed a strong softening of the HAZ in contrast to the Nb micro-alloyed grade. This can be attributed to a contrary precipitation behaviour during welding. KW - High-strength structural steel KW - Gas metal arc welding KW - HAZ-softening KW - Microalloying influences KW - Thermodynamic simulation PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-579988 DO - https://doi.org/10.1007/s40194-023-01550-2 SN - 0043-2288 SP - 1 EP - 10 PB - Springer AN - OPUS4-57998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bergant, M. A1 - Larrosa, N. A1 - Yawny, A. A1 - Madia, Mauro T1 - Short crack growth model for the evaluation of the fatigue strength of WAAM Ti-6Al-4V alloy containing pore-type defects N2 - The role of defects in the fatigue strength of Wire Arc Additively Manufactured (WAAMed) Ti-6Al-4V is analysed by means of the IBESS model, a fracture mechanics short crack growth approach based on the cyclic R-curve. Pores and crack-like defects are analysed. Estimations of the role of pore shape and size agree well with published fatigue data of WAAM Ti-6Al-4V with pores. The model is also used to explain the effect of fabrication defects on the scatter of experimental data. This demonstrates that short crack growth models represent a suitable engineering tool for the fatigue assessment of defective AM materials. KW - WAAM Ti-6Al-4V KW - Cyclic R-curve KW - IBESS model for short cracks KW - Kitagawa-Takahashi (K-T) diagram PY - 2023 DO - https://doi.org/10.1016/j.engfracmech.2023.109467 SN - 0013-7944 VL - 289 SP - 1 EP - 21 PB - Elsevier Ltd. AN - OPUS4-57963 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Abreu Faria, G. A1 - Degener, Sebastian A1 - Polatidis, E. A1 - Čapek, J. A1 - Kromm, Arne A1 - Dovzhenko, G. A1 - Bruno, Giovanni T1 - Texture-based residual stress analysis of laser powder bed fused Inconel 718 parts N2 - Although layer-based additive manufacturing methods such as laser powder bed fusion (PBF-LB) offer an immense geometrical freedom in design, they are typically subject to a build-up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar-type grain growth accompanied by crystallographic texture. Although diffraction-based methods are commonly used to determine the RS distribution in PBF-LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF-LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction-dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel-based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub-surface RS distribution. KW - Additive manufacturing KW - Electron backscattered diffraction KW - Principal stress KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578331 DO - https://doi.org/10.1107/S1600576723004855 SN - 1600-5767 VL - 56 IS - Pt 4 SP - 1076 EP - 1090 AN - OPUS4-57833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Haubrich, J. A1 - Requena, G. A1 - Madia, Mauro T1 - Influence of post-process heat treatments on the fatigue crack propagation behaviour of a PBF-LB/M AlSi10Mg alloy N2 - The microstructure has a great influence on short fatigue crack growth in metallic materials. Laser-based Powder Bed Fusion AlSi10Mg alloys exhibit in the as-built condition a fine fibrous Si structure and a supersaturated solid solution of Si in the α-Al matrix, which is significantly modified by heat treatments starting already at temperatures under 260 °C. This study focuses on the influence of post-process heat treatments on the microstructural evolution and the resulting fatigue crack growth resistance. As compared to the as-built condition, two heat treatments at 265 °C/1 h and at 300 °C/2 h are found to be beneficial to the fatigue crack growth resistance of the investigated material. KW - Additive manufacturing KW - Fatigue crack growth KW - Cyclic R-curve KW - Heat treatment PY - 2023 DO - https://doi.org/10.1016/j.ijfatigue.2023.107808 SN - 0142-1123 VL - 175 SP - 1 EP - 12 PB - Elsevier Ltd. AN - OPUS4-57822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Pfretzschner, Beate A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Kardjilov, N. A1 - Markötter, Henning A1 - Neuwirth, T. A1 - Schulz, M. A1 - Griesche, Axel T1 - High-resolution Bragg-edge neutron radiography detects grain morphology in PBF-LB/M IN718 N2 - One of the main advantages of metal additive manufacturing (MAM) techniques is their ability to produce components with site-specific microstructural features. Nevertheless, microstructural defects and lack of repeatability are still major concerns in MAM. In this study, a laser powder bed fusion (PBF-LB/M) IN718 material, produced using two different scan length vectors, is investigated using Bragg-edge neutron 2D imaging (BENI) combined with electron backscatter diffraction (EBSD) analysis. BENI is able to detect, on a macroscopic scale, process-induced changes in texture in a large field of view covering the entire sample (20×80 mm2). In addition, high-resolution BENI (HR-BENI), with a pixel size of 12.8 µm, provides a micro-scale examination of the local variations of texture and grain morphology, otherwise undistinguishable using the standard resolution. As such, HR-BENI offers a straightforward and detailed way of screening the integrity of MAM parts at cm-length scales. KW - Bragg-edge neutron 2D imaging (BENI) KW - Metal additive manufacturing (MAM) KW - IN718 PBF-LB/M KW - Crystallographic texture control KW - Electron backscatter diffraction (EBSD) PY - 2023 DO - https://doi.org/10.1016/j.mtla.2023.101827 SN - 2589-1529 VL - 30 SP - 1 EP - 6 PB - Elsevier CY - Amsterdam AN - OPUS4-57819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Czeskleba, Denis A1 - Nietzke, Jonathan A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Investigation of stress relief crack susceptibility of CrMoV steels coarse grain HAZ via simulation of uniaxial stress conditions during PWHT N2 - Creep-resistant steels such as the 13CrMoV9-10, used in the construction of thick-walled pressure vessels, are most commonly submerged arc welded (SAW). These steels can develop stress relief cracks (SRC) if the mandatory post weld heat treatment (PWHT) is performed improperly. Current PWHT parameters, such as heating rate and holding time at a specific holding temperature, are based on both empirical experience and conventional free shrinking welding experiments to characterize the SRC-susceptibility of the weld. These cannot adequately depict the higher residual stresses caused by the structurally induced stiffness of the surrounding construction. This study discusses the development of a repeatable, precise, and time-efficient methodology to study the effects of different stress levels and heating rates on the SRC susceptibility of the coarse grain heat-affected zone (CGHAZ). For that purpose, samples were thermically treated to simulate a coarse grain heat-affected zone (CGHAZ) and subsequently exposed to representative levels of stress during the heating phase of a PWHT. The recorded stress and heating rate–dependent strains were mathematically analyzed via curve tracing/calculus to identify interdependent effects. This procedure facilitates the measurement of material characteristics such as carbide growth on grain boundaries at the µm-scale via an integrated value over the entire sample volume. The first and second derivatives show a slight, precipitate-dependent, increase in hardness of the sample, depending on the heating rate and applied stress. This new methodology generates an improved assessment of the SRC susceptibility of SAW microstructures of creep-resistant CrMoV steels. KW - Submerged arc welding KW - Creep-resistant steel KW - Stress relief cracking KW - Component-like test KW - Post weld heat treatment PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-576007 DO - https://doi.org/10.1007/s40194-023-01539-x SN - 0043-2288 SP - 1 EP - 9 PB - Springer Nature CY - Basel (CH) AN - OPUS4-57600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Witte, Julien A1 - Hübler, Daniela A1 - Schröpfer, Dirk A1 - Börner, Andreas A1 - Kannengießer, Thomas ED - Hanke, S. T1 - Wear behavior of innovative niobium carbide cutting tools in ultrasonic-assisted finishing milling N2 - The resources of niobium exceed the ones of tungsten by an order of magnitude. With 92%, Brazil is today the main global producer of niobium. Hence, niobium carbides (NbC) are a sustainable and economic alternative to conventionally used cutting materials, especially tungsten carbides (WC). Moreover, NbC can be used in Ni alloy matrix and thus offer significant advantages by substituting WC in Co matrix as cutting materials in terms of health risks and raw material price and supply risk. Based on recent studies which found an increased performance of NbC compared to WC cutting tools in machining higher strength steels, the composition NbC12Ni4Mo4VC was chosen for finish machining of a high-strength steel S960QL in this study. The experiments were carried out on an ultrasonic-assisted 5-axis milling machine using NbC tools specially made to benchmark them with commercially available coated WC cutting inserts. In addition, the influence of a coating system for the NbC inserts is tested and evaluated for its performance in the cutting process. Tool wear and cutting force analyses are implied to identify optimal parameter combinations as well as tool properties for the novel NbC tool. Together with the oscillation of ultrasonic-assisted milling, the loads on the component surface and the tool can be reduced and the wear behavior of the novel NbC tool can be refined. These milling tests are accompanied by standardized wear tests, i.e., pin-on-disc, between the aforementioned material combinations, and the results are correlated with each other. Finally, the behavior when using hard-to-cut materials such as Ni alloys, or innovative materials such as iron aluminide is also being tested, as these are constantly in the focus of machining optimization. With this strategy, comprehensive knowledge is achievable for future efficient application of NbC for milling tools, which have already been researched for decades using WC. T2 - 24th International Conference on Wear of Materials CY - Banff, Canada DA - 16.04.2023 KW - Niobium carbide KW - Cutting tool KW - Ultrasonic-assisted milling KW - Tool wear PY - 2023 DO - https://doi.org/10.1016/j.wear.2023.204722 SN - 0043-1648 VL - 522 SP - 1 EP - 7 PB - Elsevier B.V. AN - OPUS4-57561 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Engelking, Lorenz A1 - Eissel, A. A1 - Schröpfer, Dirk A1 - Treutler, K. A1 - Kannengießer, Thomas A1 - Wesling, V. T1 - Optimisation of surface residual stresses using ultrasonic‑assisted milling for wire‑arc additive manufactured Ni alloy components N2 - Nickel alloys are cost intensive materials and generally classified as difficult-to-cut material. However, machining of these materials is needed especially in case of alloy 36 (1.3912), which is commonly used in mould construction for the production of fibre-reinforced composites. With regard to repair, modification and manufacturing of such components, additive manufacturing offers significant economic advantages. Nevertheless, subsequent machining steps are needed to achieve the final component contour and defined surface conditions. Dependent on the material and machining process conditions, detrimental tensile residual stresses may be the result on the machined surface, having negative impact on the component performance and safety. In this investigation, machining experiments were carried out on wire arc additive manufactured components made of alloy 36, varying the cutting speed and the feed rate. In addition, the conventional milling process (CM) was compared with a modern, hybrid machining process, the ultrasonic-assisted milling (US). The cutting forces and the surface-near residual stresses were analysed using X-ray diffraction. A significant improvement of the machinability as well as the surface integrity by using the ultrasonic assistance was observed, especially at low cutting speeds. The CM induced mainly tensile residual stresses, the US mainly compressive residual stresses. KW - Surface integrity KW - Ultrasonic-assisted milling KW - Additive manufacturing KW - Ni alloy KW - Alloy 36 PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-575246 DO - https://doi.org/10.1007/s00170-023-11326-z SN - 1433-3015 VL - 126 IS - 9 SP - 4191 EP - 4198 PB - Springer Nature AN - OPUS4-57524 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Hensel, J. T1 - Influence of the WAAM process and design aspects on residual stresses in high-strength structural steels N2 - Wire arc additive manufacturing (WAAM) enables the efficient production of weight-optimized modern engineering structures. Further increases in efficiency can be achieved by using high-strength structural steels. Commercial welding consumables for WAAM are already available on the market. Lack of knowledge and guidelines regarding welding residual stress and component safety during production and operation leads to severely limited use for industry applications. The sensitive microstructure of high-strength steels carries a high risk of cold cracking; therefore, residual stresses play a crucial role. For this reason, the influences of the material, the WAAM process, and the design on the formation of residual stresses and the risk of cold cracking are being investigated. The material used has a yield strength of over 800 MPa. This strength is adjusted via solid solution strengthening and a martensitic phase transformation. The volume expansion associated with martensite formation has a significant influence on the residual stresses. The focus of the present investigation is on the additive welding parameters and component design on their influence on hardness and residual stresses, which are analyzed by means of X-ray diffraction (XRD). Reference specimens (hollow cuboids) are welded fully automated with a systematic variation of heat control and design. Welding parameters and AM geometry are correlated with the resulting microstructure, hardness, and residual stress state. Increased heat input leads to lower tensile residual stresses which causes unfavorable microstructure and mechanical properties. The component design affects heat dissipation conditions and the intensity of restraint during welding and has a significant influence on the residual stress. KW - DED-arc KW - Additive manufacturing KW - High-strength steel filler metal KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-572698 DO - https://doi.org/10.1007/s40194-023-01503-9 SN - 1878-6669 VL - 67 IS - 4 SP - 987 EP - 996 PB - Springer CY - Berlin AN - OPUS4-57269 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eissel, A. A1 - Engelking, Lorenz A1 - Gustus, R. A1 - Treutler, K. A1 - Wesling, V. A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas T1 - Alloy modification for additive manufactured Ni alloy components—part I: effect on microstructure and hardness of Invar alloy N2 - Alloy 36 (1.3912), also known as “Invar,” is an alloy with 36% nickel. The alloy has a remarkably low thermal expansion coefficient in certain temperature ranges. This peculiarity is called the invar effect, which was discovered in 1896 by the Swiss physicist Charles Édouard Guillaume. Therefore, it is used in applications in which dimensional stability is critical, such as molding tools for composite materials in aerospace, automotive applications, or liquified natural gas (LNG) cargo tanks. Moreover, increasingly complex structures and the optimization of resource efficiency also require additive manufacturing steps for the production or repair of components. Additively manufactured components have a heterogeneous microstructure and anisotropic mechanical properties. In addition, the manufactured components require subsequent machining surface finishing, like finish milling, to achieve their final contour. Nickel iron alloys are difficult to machine. Additionally, inhomogeneous microstructure may lead to unstable cutting forces and conditions. In part I of this investigation, the initial alloy 36 is modified with the elements Ti, Zr, and Hf up to a maximum of 0.33 wt.-%. The influence of the modification elements on the microstructure as well as on the hardness of the AM components is examined. Furthermore, one modification is applied to metal arc welding process and investigated. Part II focuses on the effect of the alloy modifications on machinability as well as on the surface integrity of plasma-transferred-arc-welded (PTA) and finish milled invar components. T2 - 75th IIW Annual Assembly CY - Tokyo, Japan DA - 17.07.2022 KW - Alloy modification KW - Alloy 36 KW - Plasma-transferred arc welding PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-571777 DO - https://doi.org/10.1007/s40194-023-01510-w SN - 0043-2288 SP - 1 EP - 9 PB - Springer CY - Heidelberg AN - OPUS4-57177 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hadley, I. A1 - Zerbst, Uwe A1 - Coules, H. A1 - James, P. A1 - Sharples, J. A1 - Bath, S. A1 - Larrosa, N. T1 - Knowledge gaps in fitness-for-service assessment procedures; summary of the 2nd ‘mind the gap’ workshop N2 - In 2015, the University of Manchester hosted a workshop (‘Mind the Gap’) aimed at identifying gaps in a number of structural integrity fitness-for-service procedures, including R5, R6, BS 7910 and API/ASME. The findings were subsequently summarised in a journal paper and shared with the relevant stakeholders. A second workshop, this time hosted by the University of Bristol in 2017, was intended to build on the findings of the earlier event, identifying which gaps had been filled, which remain and whether new ones have been identified in the meantime. ‘Mind the Gap 2’ was wide-ranging, including consideration of failure by fracture, fatigue crack growth, hightemperature creep and environmentally assisted crack growth, along with the use of innovative techniques to follow the progress of crack growth from the atomic to the macroscopic scale. A summary of the whole event is thus outside the scope of a single paper, so here we concentrate mainly on advances in fracture assessment, on the interface between inspection and ECA, and on how developments are being incorporated into structural integrity procedures. There is a particular emphasis on the energy transition in the UK, where the planned energy mix will include both nuclear power and offshore wind. KW - Flaw assessment procedures KW - Non-sharp defects KW - Flaw interaction KW - Codes and standards KW - Nuclear reactor systems PY - 2023 DO - https://doi.org/10.1016/j.ijpvp.2022.104883 SN - 0308-0161 VL - 202 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56846 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, Michael A1 - Fedelich, Bernard A1 - Schlums, Hartmut A1 - Zerbst, Uwe T1 - Burst speed assessment of aero-engine turbine disk based on failure assessment diagram and global stability criterion N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. While these tests provide, on the one hand, a reliable definition of the critical conditions for real components, on the other hand they represent a relevant cost item for engine manufacturers. The aim of this work is to present two alternative burst speed assessment methods under development based on the Failure Assessment Diagram (FAD) and a global stability criterion, respectively. In the scope of the fracture mechanics assessment, the failure modes hoop-burst and rim-peeling are investigated with semicircular surface cracks modelled at the critical regions on the turbine disk. The comparison of the predicted critical rotational speed shows good agreement between the assessment methods. KW - Global stability criterion KW - Fracture mechanics KW - Burst KW - Turbine disk PY - 2023 DO - https://doi.org/10.1016/j.engfracmech.2022.109005 SN - 0013-7944 VL - 277 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-56736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -