TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Comparison between CO2- and Nd: YAG-laser beam welding of high-strength CrMnNi steels for the automotive industry JF - Welding in the world N2 - IIW-2326 Austenitic and austenitic-ferritic CrMnNi-stainless steels are suitable materials in the transport and automotive industry due to their high corrosion resistance and high strength that allows weight and cost savings. This study focuses on the laser weldability of a commercial lean duplex and an austenitic high manganese stainless steel. The impact of different laser sources, i.e. a 5 kW CO2- and a 4 kW Nd:YAG-laser, and of the main process parameters on the resulting weld quality will be investigated. One important aspect will concern the appearance of weld defects such as pores and hot cracks. The factors causing such internal imperfections will be analysed in order to find effective methods for preventing them. Weld microstructure and the associated corrosion and mechanical properties will be assessed with different techniques and adequate process parameters for high quality welds will be determined. The advantages and limitations of the applied welding processes will be evaluated for future applications. KW - Laser beam welding KW - Stainless steel KW - Austenitic KW - Duplex KW - Weld microstructure KW - Pores KW - Cracks KW - Corrosion KW - Tensile strength PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 11/12 SP - 129 EP - 142 PB - Springer CY - Oxford AN - OPUS4-27911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Polami, S.M. A1 - Rethmeier, Michael A1 - Schmid, A. T1 - Friction welding of drive pinions for heavy-duty trucks T2 - 5. VDI-Fachtagung Welle-Nabe-Verbindungen T2 - 5. VDI-Fachtagung Welle-Nabe-Verbindungen CY - Nürtingen, Germany DA - 2012-09-25 PY - 2012 SN - 978-3-18-092176-1 SN - 0083-5560 N1 - Serientitel: VDI-Berichte – Series title: VDI-Berichte VL - 2176 SP - 211 EP - 219 PB - VDI-Verl. CY - Düsseldorf AN - OPUS4-27749 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weber, Gert A1 - Brauser, Stephan A1 - Gaul, Holger A1 - Rethmeier, Michael T1 - Study of fatigue behavior for spot welded tensile shear specimens of advanced high strength steels JF - Steel research international N2 - For automotive body-in-white applications the influence of manufacture-related gaps between the steel sheets and also of manufacture-related surface cracks on the fatigue behavior of tensile shear specimens for spot welded TRIP steel was analyzed. It was shown that gaps between the steel sheets reduce the fatigue strength, whereas the fatigue behavior is neither influenced by cracks in the electrode indentation area nor in the heat effected zone. PY - 2012 DO - https://doi.org/10.1002/srin.201100286 SN - 1611-3683 SN - 0177-4832 VL - 83 IS - 10 SP - 988 EP - 994 PB - Verl. Stahleisen CY - Düsseldorf AN - OPUS4-27632 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Rethmeier, Michael A1 - Pepke, Lutz-Alexander A1 - Weber, Gert T1 - Influence of production-related gaps on strength properties and deformation behaviour of spot welded trip steel HCT690T JF - Welding in the world N2 - In this study, the influence of production-related gaps on the shear tension strength and fatigue performance was investigated for resistance spot welded TRIP steel HCT690. Furthermore, the local strain distribution in shear tension test was calculated by the digital image correlation technique (DIC). The static shear tension strength was found to be almost independent of gaps up to 3 mm. The maximum local strain in the spot weld region however decreases depending on which sample side (deformed or undeformed) is considered. In addition, it has been ascertained that gaps of 3 mm lead to a significant drop in fatigue life compared to gap-free shear tension samples. This fact could be attributed to decreased stiffness, higher transverse vibration and higher rotation (θ) between the sheets as well as increased local stress calculated by 2 dimensional FE simulation. KW - Deformation KW - Fatigue life KW - Finite element analysis KW - Gap KW - Resistance spot welding KW - Shear strength PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 03-04 SP - 115 EP - 125 PB - Springer CY - Oxford AN - OPUS4-27590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Graf, Benjamin A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser metal deposition as repair technology for stainless steel and titanium alloys T2 - LANE 2012 - Laser Assisted net shape engineering 7 N2 - In a repair process chain, damaged areas or cracks can be removed by milling and subsequently be reconditioned with new material deposition. The use of laser metal deposition has been investigated for this purpose. The material has been deposited into different groove shapes, using both stainless steel and Ti-6Al-4 V. The influence of welding parameters on the microstructure and the heat affected zone has been studied. The parameters have been modified in order to achieve low heat input and consequently low distortion as well as low metallurgical impact. Finally, an evaluation of the opportunities for an automatized repair process is made. T2 - LANE 2012 - Laser Assisted net shape engineering 7 CY - Fürth, Germany DA - 2012-11-12 KW - Laser metal deposition KW - Laser powder cladding KW - Repair welding KW - Ti-6Al-4 V KW - Stainless steel PY - 2012 DO - https://doi.org/10.1016/j.phpro.2012.10.051 N1 - Serientitel: Physics Procedia – Series title: Physics Procedia VL - 39 SP - 376 EP - 381 AN - OPUS4-27306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of the hot cracking susceptibility of laser welds with the controlled tensile weldability test JF - The journal of strain analysis for engineering design N2 - Due to significant developments over the last decades, laser beam welding has become a well-established industrial process offering high processing speeds and causing low component distortions. But an important issue currently preventing its intense use, especially in the energy or plant construction sector where high alloy steels are applied, concerns hot crack formation. Although considerable advances in understanding hot cracking mechanisms have been made, most of the known influencing factors are metallurgical in character. The thermo-mechanical effects are barely considered or quantified. Up to the present, there exist numerous hot cracking tests that were however conceived for welding methods other than laser beam welding. Considering the special features of the laser welding process, such as high cooling rates and the narrow process zone, results obtained with other welding techniques and test procedures cannot be transferred to laser beam welding. In this study, the laser beam weldability of various stainless steels was examined in terms of their susceptibility to hot cracking by means of the controlled tensile weldability test, which was proven to be suitable for use in conjunction with CO2 laser welding. This test allows the application of tensile strain at a variable fixed cross-head speed transverse to the welding direction. Full and partial penetration bead-on-plate welds were produced. In a first attempt to determine the impact of the applied external strain on the local transient strains and strain rates near the weld pool, an optical system was used to measure the backside surface of partial penetration welds. The results showed the influence of the strain and the strain rates on hot crack formation. Furthermore, a classification of the studied austenitic, duplex and ferritic stainless steels according to the established test criteria (critical strain and cross-head speed) was conducted. KW - Laser beam welding KW - CO2 laser KW - Hot cracking KW - Stainless steels KW - Critical strains KW - Strain rates KW - Hot cracking test KW - Controlled tensile weldability test PY - 2012 DO - https://doi.org/10.1177/0309324712462120 SN - 0309-3247 SN - 2041-3130 VL - 47 IS - 8 SP - 587 EP - 599 PB - Sage CY - London AN - OPUS4-27281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Avilov, Vjaceslav A1 - Schneider, André A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Electromagnetic control of the weld pool dynamics in partial penetration laser beam welding of aluminium alloys T2 - ICALEO 2012 - 31st International congress on applications of lasers & electro-optics (Proceedings) N2 - An oscillating (AC) magnet field was used to suppress porosity formation and to stabilize the surface of the weld pool in bead-on-plate partial penetration 4.4 kW Nd:YAG laser beam welding of AW-5754 plates in PA position. The magnet was mounted on the laser welding head. The magnet field (up to 0.4 T and 10 kHz) was oriented perpendicular the welding direction. The analysis of the weld cross-sections and x-ray images shows a drastic reduction (up to 90%) of porosity contents in the welds. The observed effects can be explained in terms of electromagnetically (EM) induced 'Archimedes' forces as well as the EM stirring flow in the weld pool. Moreover, usage of AC magnetic fields results in a significant reduction (up to 50%) of the surface roughness of the welds. This effect can be explained in terms of electromagnetic (EM) contribution to the surface tension (the Garnier-Moreau effect) T2 - ICALEO 2012 - 31st International congress on applications of lasers & electro-optics CY - Anaheim, CA, USA DA - 23.09.2012 PY - 2012 IS - Paper 701 SP - 250 EP - 256 AN - OPUS4-27257 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigations on laser beam welding of high-manganese austenitic and austenitic-ferritic stainless steels JF - The Paton welding journal KW - Laser welding KW - CO2- and Nd:YAG laser KW - Stainless austenitic and duplex steels KW - Higher manganese content KW - Process stability KW - Shielding atmosphere KW - Weld metal KW - Microstructure KW - Mechanical properties KW - Corrosion resistance PY - 2012 SN - 0957-798X VL - 1 SP - 10 EP - 14 PB - E. O. Paton Electric Welding Institute of the National Acad. of Sciences of Ukraine CY - Kyïv AN - OPUS4-27062 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Multi-physics process simulation of static magnetic fields in high power laser beam welding of aluminium T2 - COMSOL Conference 2012 (Proceedings) N2 - A three-dimensional turbulent steady state numerical model was used to investigate the influence of a stationary magnetic field during partial penetration high power laser beam keyhole welding of thick aluminum parts. COMSOL Multiphysics was used to calculate the three-dimensional heat transfer, fluid dynamics and electromagnetic field equations. Thermo-capillary (Marangoni) convection at the upper weld pool surface, natural convection due to gravity and latent heat of solid-liquid phase transition were taken into account. It shows that the application of steady magnetic fields produces a braking Lorentz force in the melt based on the Hartmann effect. The flow pattern in the weld pool and also the temperature distribution and associated weld pool geometry thus change significantly. Convective flows in the melt can effectively be suppressed and the influence of thermo-capillary flow is diminished to a thin surface layer. T2 - COMSOL Conference 2012 CY - Milan, Italy DA - 10.10.2012 KW - Electromagnetic weld pool control KW - Laser beam welding KW - Lorentz force KW - Marangoni convection KW - Buoyancy PY - 2012 SN - 978-0-9839688-7-0 SP - 1 EP - 7 AN - OPUS4-26993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schempp, Philipp A1 - Cross, Carl Edward A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Influence of Ti and B additions on grain size and weldability of aluminium alloy 6082 JF - Welding in the world N2 - Grain refinement is an important possibility to enhance the weldability of aluminium weld metal that is usually defined by its susceptibility to solidification cracking. In this study, grain refinement was achieved through the addition of commercial grain refiner containing titanium and boron to the GTA weld metal of aluminium alloy 6082. The weld metal mean grain size could be reduced significantly from about 70 µm to a saturated size of 21 µm with a change in grain shape from columnar to equiaxed. The grain refinement prevented the formation of centreline solidification cracking that was present only in welds with unrefined grain structure. A variation of torch speed led to a strong change of solidification parameters such as cooling rate that was measured in the weld metal and the corresponding solidification rate and thermal gradient. The ratio thermal gradient/growth rate (G/R) decreased from 50 K s/mm² (high torch speed) to 10 K s/mm² (low torch speed). However, the variation of torch speed did not change the tendency for solidification cracking. The microstructure of unrefined and completely refined weld metal was compared. The observed change in size and distribution of the interdendritic phases was related to the change in susceptibility to solidification cracking. KW - Aluminium KW - WIG-Schweißen KW - Kornfeinung KW - Schweißeignung KW - Heißrisse KW - Aluminium alloy KW - Solidification cracking KW - Weldability KW - GTA welding PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 09/10 SP - 95 EP - 104 PB - Springer CY - Oxford AN - OPUS4-26992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Fluid flow simulation of the influence of a steady magnetic field on the weld pool dynamics in deep penetration laser beam welding of aluminium JF - Journal of iron and steel research international N2 - A multi-physics numerical model was developed to investigate the influence of a steady magnetic field during partial penetration keyhole laser beam welding of an aluminum plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved with the finite element differential equation solver COMSOL Multiphysics. The magnetic field was aligned perpendicularly to the welding direction. The main objective of these simulations was to estimate the critical value of the magnetic field needed to suppress convective flows in the weld pool during high-power (up to 20 kW) laser beam welding of aluminum alloys with up to 20 mm deep weld pool. It reveals that steady magnetic fields with corresponding Hartmann numbers Ha^2 ~ 10^4 based on the half-width of the weld pool can effectively suppress convective flows in the weld pool. Moreover, the typically occurring wineglass-shape of the weld cross section caused by thermo-capillary flow is weakened. KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection KW - Hartmann effect PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 467 EP - 470 PB - Ed. Board CY - Beijing AN - OPUS4-26914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Simulation of an inductive weld pool support for deep penetration laser beam welding of metal parts JF - Journal of iron and steel research international N2 - three-dimensional laminar steady state numerical model was used to investigate the influence of an altemating current (ac) magnetic field during single pass high power laser beam keyhole welding of 20 mm thick aluminum. The three-dimensional heat transfer, fluid dynamics and electromagnetic field equations were solved with the commercial finite element package COMSOL Multiphysics. Dominant physical effects of the process were taken into account: Thermo-capillary (Marangoni) convection at the upper and lower weld pool surfaces, natural convection due to the gravity influence and the latent heat of solid-liquid phase transition. Simulations were conducted for several magnetic field strengths and it was found that the gravity drop-out associated with welding of thick plates due to the hydrostatie pressure can be prevented by the application of an ac magnetic field below the weld specimen of around 70 mT (rms) at an oscillation frequency of 450 Hz. The inductive support System allows for single-pass laser beam welding of thick aluminum plates. The flow pattem in the molten zone and the temperature distributions are significantly changed by the application of the electromagnetic forces in the weld pool. KW - Electromagnetic weld pool support KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 114 EP - 117 PB - Ed. Board CY - Beijing AN - OPUS4-26913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, Moritz Oliver A1 - Gumenyuk, Andrey A1 - Quiroz Penaranda, Vanessa A1 - Rethmeier, Michael T1 - Laser/GMA hybrid welding of thick-walled precision pipes JF - Welding and cutting N2 - Thick-walled pipes made of steel are the basis of a large number of components in mechanical and installation engineering, e.g. for hydraulic components, in power station technology or in the petroleum industry. Particularly when strict positional and shape tolerances are demanded, the classical manufacturing process is chip-producing machining from the solid material. However, this is time-intensive and material-intensive. The laser/GMA hybrid processes with modern high-power lasers are a suitable alternative. With these processes, it is currently possible to weld components with a wall thickness up to approx. 15 mm with little distortion in one pass. However, in initial experiments, solidification cracks with longitudinal and vertical orientations in relation to the welding direction, so-called central line cracks, were established in welds on pipes. Within the framework of a research project, it was possible to determine the cause of the cracking and to find measures in order to avoid it. The technical boundary conditions could be complied with in this respect. The article gives an overview of the research project and the essential results. PY - 2012 SN - 1612-3433 VL - 11 IS - 5 SP - 312 EP - 318 PB - DVS - German Welding Society CY - Düsseldorf AN - OPUS4-26912 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Schneider, André A1 - Lammers, Marco A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Electromagnetic control of the weld pool dynamics in partial penetration laser beam welding of aluminium alloys JF - Journal of iron and steel research international N2 - The main characteristic feature of deep penetration laser beam welding is a large temperature difference between the plasma cavity (keyhole) in the centre of the weld pool and the melting/solidification front. Large temperature gradients in the weld pool result in a very intensive thermocapillary (Marangoni) convection. The weld pool surface width becomes very large and unstable. However, an externally applied oscillating magnetic field can stabilize the surface of the melt (the Garnier-Moreau effect, 1983). In the present work this technology was used to stabilize the surface of the weld pool in partial penetration 4.4 kW Nd:YAG laser beam welding of AW-5754 alloyin PA position. The AC magnet was mounted on the laser welding head. The oscillating magnet field was oriented perpendicular to the welding direction. It was found that the AC magnet field can drastically reduce the surface roughness of welds. The analysis of the x-ray images shows a rastic reduction of porosity content in the welds. This effect can be explained as a result of electromagnetic ectification of the melt. KW - Electromagnetically controlled laser beam welding KW - Weld pool stabilization KW - Porosity prevention PY - 2012 SN - 1006-706X SN - 1001-0963 VL - 19 IS - Suppl. 1 SP - 233 EP - 236 PB - Ed. Board CY - Beijing AN - OPUS4-26833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weber, Gert A1 - Rethmeier, Michael T1 - Spot welding and weldbonding of high strength steels for lightweight auto body manufacturing T2 - EUROJOIN 8 - 8th European conference (Proceedings) T2 - EUROJOIN 8 - 8th European conference CY - Pula, Croatia DA - 2012-05-24 KW - Spot welding KW - Weldbonding KW - High strength steels KW - Process reliability KW - Mechanical properties of joints PY - 2012 SP - 633 EP - 643 AN - OPUS4-26383 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Schwenk, Christopher A1 - Rethmeier, Michael A1 - Noack, T. A1 - Jüttner, S. T1 - Influence of welding-induced cracks on the fatigue strength of resistance-spot-welded joints made of high-strength austenitic steel JF - Welding and cutting N2 - In the rough conditions in the fabrication of automobile bodies, it is not always possible to avoid welding-induced imperfections such as cracks during the resistance spot welding of high-strength steels. In this respect, the influence of such cracks on the fatigue strength particularly of modern high-strength austenitic steels is not sufficiently well-known at present. The influence of welding cracks with various positions and formations was therefore investigated within the framework of this paper. In this case, the analysis of the standardised stiffness courses of specimens and the comparison of the numbers of failure stress cycles served to prove that the surface cracks produced without any spatter in the centre, interfacial region and peripheral region of the weld nugget do not have any negative influence on the fatigue strength of the high-strength austenitic material investigated here. Specimens which were manufactured with welding spatter and exhibit cracks in the peripheral region show considerably higher numbers of failure stress cycles than crack-free reference specimens. PY - 2012 SN - 1612-3433 VL - 11 IS - 4 SP - 232 EP - 235 PB - DVS - German Welding Society CY - Düsseldorf AN - OPUS4-26346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schlichting, Joachim A1 - Brauser, Stephan A1 - Pepke, Lutz-Alexander A1 - Maierhofer, Christiane A1 - Rethmeier, Michael A1 - Kreutzbruck, Marc T1 - Thermographic testing of spot welds JF - NDT & E international N2 - Spot welding is one of the most important technologies for joining sheet metal. While there are lot of approaches to non-destructive testing, quality assurance still mainly relies on welding parameter monitoring and destructive testing, leading to significant failure rates. In this paper an approach to spot weld testing using flash thermography is presented. The main focus of attention is on the identification of two typical error classes: stick welds and welds at the splash limit. Besides investigating the principal feasibility of thermography for zinc plated samples the results of a series test of spot welds joining 1 mm thick TRIP steel are shown. Based upon these results a statistical criterion is developed which allows a reliable classification of the named error classes. KW - Thermography KW - Spot welding KW - Automotive industry PY - 2012 DO - https://doi.org/10.1016/j.ndteint.2012.02.003 SN - 0963-8695 VL - 48 SP - 23 EP - 29 PB - Butterworth-Heinemann CY - Oxford AN - OPUS4-26276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebhardt, Moritz Oliver A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid process welds thick-walled tubes JF - Welding journal PY - 2012 SN - 0043-2296 SN - 0096-7629 VL - 91 IS - 6 SP - 55 EP - 61 PB - American Welding Society CY - New York, NY AN - OPUS4-26120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reisgen, U. A1 - Olschok, S. A1 - Backhaus, A. A1 - Rethmeier, Michael A1 - Gumenyuk, Andrey A1 - Tölle, Florian T1 - Reduction of weld residual stresses with the electron beam T2 - 2nd International electron beam welding conference (IEBW) T2 - 2nd International electron beam welding conference (IEBW) CY - Aachen, Germany DA - 2012-03-26 PY - 2012 SN - 978-3-87155-299-1 N1 - Serientitel: DVS-Berichte – Series title: DVS-Berichte VL - 285 SP - 128 EP - 132 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-26110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Chen, Ji A1 - Schwenk, Christopher A1 - Wu, Chuan Song A1 - Rethmeier, Michael T1 - Predicting the influence of groove angle on heat transfer and fluid flow for new gas metal arc welding processes JF - International journal of heat and mass transfer N2 - This article studies the three dimensional transient weld pool dynamics and the influence of groove angle on welding of low carbon structural steel plates using the ForceArc® process. The deformation of the weld bead is also calculated with an accurate coupling of the heat transfer with fluid flow through continuity, momentum and the energy equations combined with the effect of droplet impingement, gravity, electromagnetic force, buoyancy, drag forces and surface tension force (Marangoni effect). Different angles of V groove are employed under the same welding parameters and their influence on the weld pool behavior and weld bead geometry is calculated and analyzed, which is needed for subsequent calculations of residual stress and distortion of the workpiece. Such a simulation is an effective way to study welding processes because the influence of all welding parameters can be analyzed separately with respect to heat transfer, weld pool dynamic, and microstructure of the weld. Good agreement is found between the predicted and experimentally determined weld bead cross-section and temperature cycles. It is found that the main flow pattern is more or less the same although the groove angle increases, but it will evoke larger amount of fluid to flow downward to get deeper penetration. KW - Numerical simulation KW - Gas metal arc welding KW - Weld pool dynamics KW - Fluid flow KW - V groove PY - 2012 DO - https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.046 SN - 0017-9310 VL - 55 IS - 1-3 SP - 102 EP - 111 PB - Elsevier CY - Amsterdam AN - OPUS4-26001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tölle, Florian A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Reduction of residual stresses in laser beam welds by means of defocused laser beams JF - Science and technology of welding and joining N2 - Longitudinal residual stresses in beam welds ranging at the value of the local yield strength can diminish the lifespan of components. To extend the service life of welds special methods of welding residual stress reduction were developed earlier which are however not effective for beam welds in complex component geometries. Application of beam welding sources for postwelding heat treatment of components has become a flexible tool for reducing longitudinal stresses in beam welds. Such heat treatment in a specific transversal distance to the weld by a defocused beam results in huge stress reductions depending on the used process parameters. Experimental results for ferritic and austenitic steels reveal weld stress reductions to up to compressive stresses. For different materials and diverse material thicknesses special process parameter regions have to be used in this procedure. At a transmission component this procedure shows a stress reduction by >300 MPa. KW - Post-welding heat treatment KW - Stress reduction KW - Residual stress KW - Beam welding PY - 2012 DO - https://doi.org/10.1179/1362171812Y.0000000019 SN - 1362-1718 SN - 1743-2936 VL - 17 IS - 5 SP - 381 EP - 385 PB - Maney CY - London AN - OPUS4-26000 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Babu, N. K. A1 - Brauser, S. A1 - Rethmeier, Michael A1 - Cross, C.E. T1 - Characterization of microstructure and deformation behaviour of resistance spot welded AZ31 magnesium alloy JF - Materials science and engineering A N2 - Resistance spot welds were prepared on 3 mm thick sheets of continuous cast and rolled AZ31 magnesium alloy. The microstructure and composition analysis of weld nugget, heat affected zone (HAZ) and base metal were examined using optical and scanning electron microscopy (HR-SEM and EDS/X). The resistance spot welded magnesium alloy joints consist mainly of weld nugget and HAZ. The nugget contains two different structures, i.e. the cellular-dendritic structure at the edge of the nugget and the equiaxed dendritic structure in the centre of the nugget. The structure transition is attributed to the changes of solidification conditions. In the HAZ, grain boundary melting occurred and grain boundaries became coarse. It has been shown that hardness reduction in the weld nugget and HAZ compared with base metal is evident due to dendritic microstructure and grain growth, respectively. The results showed that spot welded joints have failed in interfacial mode under torsion and tensile–shear loading conditions. Digital image correlation during tensile–shear testing showed that low surface strains occur in the interfacial failure mode, because fracture and deformation happened primarily in the nugget area. KW - Resistance spot welding KW - AZ31 magnesium alloy KW - Microstructure KW - Hardness KW - Torsion KW - Tensile–shear PY - 2012 DO - https://doi.org/10.1016/j.msea.2012.04.021 SN - 0921-5093 SN - 1873-4936 VL - 549 SP - 149 EP - 156 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-25924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Lammers, Marco A1 - Rethmeier, Michael T1 - PA position full penetration high power laser beam welding of up to 30 mm thick AlMg3 plates using electromagnetic weld pool support JF - Science and technology of welding and joining N2 - Full penetration 15 kW Yb fibre laser butt welding of thick AlMg3 (AW 5754) plates was performed in PA position. A contactless inductive electromagnetic weld pool support system was used to prevent gravity dropout of the melt. The welding speed needed to achieve 20 mm penetration was ~0·5 m min-1. An ac power supply of ~244 W at 460 Hz was necessary to completely suppress gravity dropout of the melt and eliminate sagging of the weld pool root side surface. The oscillating magnetic field can suppress the Marangoni convection in the lower part of the weld pool. The system was also successfully used in the full penetration welding of 30 mm thick AlMg3 plates. KW - High power laser beam welding KW - Electromagnetic weld pool support KW - Full penetration PY - 2012 DO - https://doi.org/10.1179/1362171811Y.0000000085 SN - 1362-1718 SN - 1743-2936 VL - 17 IS - 2 SP - 128 EP - 133 PB - Maney CY - London AN - OPUS4-25888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - Numerical calculation of residual stress development of multi-pass gas metal arc welding JF - The journal of constructional steel research N2 - In various applications, welding-induced residual stresses have a substantial impact on the integrity of welded constructions. Tensile residual stress can promote stress-corrosion cracking, brittle fracture, and reduces the fatigue life in service, as well as influences component design due to critical stress concentrations within the component. In the present paper, a six bead multi-pass gas metal arc weld of 20 mm thick structural steel S355J2+N is experimentally and numerically investigated. The studies include transient 2D and 3D numerical calculations which consider temperature-dependent material properties, phase transformations, 'thermal' tempering, transformation plasticity, volume change due to phase transformation, an elastic–plastic material model, and isotropic strain hardening. The experimentally determined and calculated residual stresses are in a good agreement. Furthermore, the influence of the preheat and interpass temperature on welding-induced residual stresses is shown in the present investigation. KW - Welding simulation KW - Gas metal arc welding KW - Welding-induced residual stress KW - Multi-pass welding KW - Sensitivity analysis PY - 2012 DO - https://doi.org/10.1016/j.jcsr.2011.08.011 SN - 0143-974x VL - 72 SP - 12 EP - 19 PB - Elsevier CY - Oxford AN - OPUS4-25629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz Penaranda, Vanessa A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser beam weldability of high-manganese austenitic and duplex stainless steel sheets JF - Welding in the world N2 - Manganese alloyed stainless steels represent a cost-effective alternative to conventional CrNi- stainless steels due to strong fluctuations of the market prices for nickel seen during the last years. In CrMnNi steels, nickel is partially replaced by lower-cost manganese and small amounts of nitrogen for stabilization of the austenitic phase. This also brings benefits regarding the mechanical properties, as it results in an increased material strength. Laser beam welding of such materials was investigated for direct comparison with standard CrNi steels. Main emphasis was laid on finding adequate process parameters to achieve a stable welding process and obtain a good weld quality. Two different laser sources, a 4.4 kW Nd:YAG and a 5 kW CO2 laser, were used to weld 1.5 mm stainless steel sheets in continuous wave mode. A high-Mn austenitic (1.4376) and a lean duplex (1.4162) steel, as well as the standard austenitic (1.4301) and duplex (1.4362) grades were selected as test materials. Both butt and lap joint configurations were studied. Experiments were carried out systematically, varying the welding speed, laser power and focal point position in order to determine adequate process windows. The influence of the shielding gas type and flow rate on the process stability and the weld quality were investigated. The effects of weld edge preparation on the weld appearance and quality levels attained were also examined. The obtained welded joints were subjected to radiographic tests for detection of internal imperfections. Also a metallurgical characterization of the samples regarding the resulting phase composition or balance and hardness depending on the welding process parameters was conducted. Furthermore, tensile and potentiodynamic tests were performed to evaluate the mechanical and corrosion properties, respectively. The results provide an insight into the advantages and limitations of the laser beam welding process for joining high-manganese alloyed stainless steels. Conditions for the production of defect-free and corrosion-resistant welds having good mechanical properties could be determined. KW - Austenitic stainless steels KW - Corrosion KW - CO2 lasers KW - Duplex stainless steels KW - Laser welding KW - Manganese KW - Mechanical properties KW - Shielding gases KW - YAG lasers KW - Weldability PY - 2012 SN - 0043-2288 SN - 1878-6669 VL - 56 IS - 1/2 SP - 9 EP - 20 PB - Springer CY - Oxford AN - OPUS4-25404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bachmann, Marcel A1 - Avilov, Vjaceslav A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Numerical simulation of full-penetration laser beam welding of thick aluminium plates with inductive support JF - Journal of Physics D N2 - A three-dimensional laminar steady-state numerical model was developed to investigate the influence of an alternating current (ac) magnetic field during high-power full-penetration laser welding on the weld pool dynamics and weld cross section of a 20 mm thick aluminium plate in flat position. Three-dimensional heat transfer, fluid dynamics including phase transition and electromagnetic field partial differential equations were solved iteratively with the commercial finite element software COMSOL Multiphysics using temperature-dependent material properties up to evaporation temperature. Thermocapillary convection at the weld pool surfaces, natural convection and latent heat of solid–liquid phase transition were taken into account in this model. Solidification was modelled by the Carman–Kozeny equation for porous media morphology. The ac magnet was mounted on the root side of the weld specimen. The magnetic field was aligned perpendicular to the welding direction. The flow pattern in the melt and thus also the temperature distribution were significantly changed by the application of oscillating magnetic fields. It was shown that the application of an ac magnetic field to laser beam welding allows for a prevention of the gravity drop-out. The simulation results are in good qualitative agreement with the experimental observations. KW - Electromagnetic weld pool support KW - Laser beam welding KW - Lorentz force KW - Marangoni stresses KW - Natural convection PY - 2012 DO - https://doi.org/10.1088/0022-3727/45/3/035201 SN - 0022-3727 SN - 1361-6463 VL - 45 IS - 3 SP - 035201-1 - EP - 035201-13 PB - IOP Publ. CY - Bristol AN - OPUS4-25286 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ullner, Christian A1 - Brauser, Stephan A1 - Subaric-Leitis, Andreas A1 - Weber, Gert A1 - Rethmeier, Michael T1 - Determination of local stress-strain properties of resistance spot-welded joints of advanced high-strength steels using the instrumented indentation test JF - Journal of materials science N2 - For spot-welded joints, the resistance to mechanical stress depends on the local strength properties and gradients in the weld area. The commonly used methods for investigating the stress–strain behaviour across the weld area are connected with a high level of sample preparation and with considerable limitations in local resolution. A promising method for determining locally resolved stress–strain curves is the instrumented indentation test in connection with the method of representative stress and strain (RS) and the method of artificial neural networks (NNs). The stress–strain properties of the weld nugget and the base metal determined by these two methods are compared and discussed, additionally in relation to the stress–strain curves obtained from the tensile test. The measured Vickers hardness across the weld area is compared with the evaluated local stress–strain properties. Three steels used in automobile manufacturing are investigated: mild steel DC04 and two advanced high-strength steels (TRIP steel HCT690T and martensitic steel HDT 1200M). The results of the two methods (RS and NN) show good correspondence for the base metal area but some significant differences for the weld nugget. Comparing the data across the weld area, no evidence of the presence of residual stress (which would influence the results) was found. KW - Ortsaufgelöst KW - Lokale Spannungs-Dehnungskurven KW - Punktschweißverbindung KW - Instrumentierte Eindringprüfung PY - 2012 DO - https://doi.org/10.1007/s10853-011-5936-3 SN - 0022-2461 SN - 1573-4803 VL - 47 IS - 3 SP - 1504 EP - 1513 PB - Springer Science + Business Media B.V. CY - Norwell, Mass. AN - OPUS4-25276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Schwenk, Christopher A1 - Rethmeier, Michael T1 - The effect of tack welding on numerically calculated welding-induced distortion JF - Journal of materials processing technology N2 - A single-layer pulsed gas metal arc weld of structural steel S355J2+N with a thickness of 5 mm is experimentally and numerically investigated. Two tack welds are considered in the numerical simulation into two different ways. First, the tack welds are represented by elements belonging to the initial material. This implies that the 'tack weld material' was not exposed to any thermal load or phase transformation before actual welding was performed. The weld seam is shortened and there is an influence on the stiffness of the whole structure affecting the calculation result. Secondly, the tack welds were simulated as conducted in the experimental welding procedure. The cases considering tack welding are compared to a simulation neglecting tack welding and to the experimental results. The influence of tack welds on the calculated welding-induced distortion is clarified and a contribution to an improved simulation-based prediction of welding-induced distortion is possible by modeling tack welding according to the realistic fabrication procedure. KW - Welding simulation KW - Welding-induced distortion KW - Gas metal arc welding KW - Tack welding PY - 2012 DO - https://doi.org/10.1016/j.jmatprotec.2011.09.016 SN - 0924-0136 SN - 1873-4774 VL - 212 IS - 1 SP - 308 EP - 314 PB - Elsevier CY - Amsterdam AN - OPUS4-24820 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tölle, Florian A1 - Gumenyuk, Andrey A1 - Backhaus, A. A1 - Olschok, S. A1 - Rethmeier, Michael A1 - Reisgen, U. T1 - Welding residual stress reduction by scanning of a defocused beam JF - Journal of materials processing technology N2 - The residual stresses in narrow electron or laser beam welds with high stress gradients are decreased without any contact surfaces or additional equipment by applying the welding beam after welding in a defocused mode for heating the material regions in a certain distance from the weld on both sides. In case of electron beam application, the beam is positioned and focused by the electromagnetic coil with high frequency. In case of laser beam application a laser scanner optics enables fast positioning by an optomechanic beam deflection, while defocusing of the laser beam is obtained by increasing the distance between scanner optics and workpiece. Dependent on the component geometry and on the beam power different process parameters are used. The adjustable process parameters are the radius and the power of the defocused beam and the transversal and longitudinal distances between the welding and the defocused beam. The mechanism and the influence of the process parameters are investigated by FEM-simulation and a number of experiments on a ferritic steel S355J2+N with 5 mm thickness. FEM-simulation is used to reduce the matrix of process parameters for the experiments. The best experimental result shows a stress reduction of about 70%. KW - Residual stresses KW - Stress reduction KW - High energy beam welding KW - Post-weld heat treatment KW - Laser scanner optics PY - 2012 DO - https://doi.org/10.1016/j.jmatprotec.2011.07.019 SN - 0924-0136 SN - 1873-4774 VL - 212 IS - 1 SP - 19 EP - 26 PB - Elsevier CY - Amsterdam AN - OPUS4-24787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -